K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

14 tháng 6 2018

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

NV
21 tháng 2 2020

\(D=\frac{1}{2}\left(4x^2+4xy+y^2+16-16x-8y\right)+\frac{9}{2}\left(y^2-4y+4\right)-26\)

\(D=\frac{1}{2}\left(2x+y-4\right)^2+\frac{9}{2}\left(y-2\right)^2-26\ge-26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

11 tháng 7 2019

\(B=2x^2+2xy+5y^2-8x-22y\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+\left(4y^2-22y+\frac{484}{16}\right)-\frac{185}{4}\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+\left(2y-\frac{22}{4}\right)^2-\frac{185}{4}\ge-\frac{185}{4}\)

Dấu = xảy ra khi :

.........................

Bn tự giải nốt nhé, mk ko bt có đúng hay ko , nếu sai thì thông cảm nha........

28 tháng 6 2021

Đặt `A=2x^2+2xy+5y^2-8x-22y`

`<=>2A=4x^2+4xy+10y^2-16x-44y`

`<=>2A=4x^2+4xy+y^2-8(2x+y)+9y^2-28y`

`<=>2A=(2x+y)^2-8(2x+y)+16+9y^2-28y+196/9-196/9`

`<=>2A=(2x+y-4)^2+(3y-14/3)^2-196/9>=-196/9`

`<=>A>=-98/9`

Dấu "=" xảy ra khi `y=14/9,x=(4-y)/2=11/9`

30 tháng 6 2021

m ra gtnn là -26

 

26 tháng 2 2016

CÂU NÀY RẤT DỄ. ANH ĐÃ BIẾT KẾT QUẢ TỪ KHI MỚI NHÌN ĐẦU BÀI: KẾT QUẢ LÀ .Z.O.L.......L.O.Z..............................FDGR...................HAPPY........BEAUTYFULLY.>>>>>,<<<<<<<<< .THẰNG NÀO KO HIỂU CHỨNG TỎ NGU . THANKS

27 tháng 8 2020

B = 4x2 + 8x 

= 4( x2 + 2x + 1 ) - 4

= 4( x + 1 )2 - 4

4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinB = -4 <=> x = -1

C = -2x2 + 8x - 15

= -2( x2 - 4x + 4 ) - 7

= -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

19 tháng 3 2018
2.x2+2.x(y−4)+5.y2−22y2.(x+y+42)2+10y2−44y−(y+4)222.(x+y+42)2+9y2−52y−1622.(x+y+42)2+9(y−269)2−820922.(x+y+42)2+92.(y−269)2−4109≥−4109⇒minA=−4109y=269x=−319
7 tháng 8 2016

\(B=2x^2+8x+1\)

\(=2\times\left(x^2+2\times x\times2+2^2-2^2+\frac{1}{2}\right)\)

\(=2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\)

\(\left(x+2\right)^2\ge0\)

\(\left(x+2\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)

\(2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\ge-7\)

Vậy Min B = -7 khi x = -2