Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1-\dfrac{2}{3\cdot5}-\dfrac{2}{5\cdot7}-\dfrac{2}{7\cdot9}-...-\dfrac{2}{61\cdot63}-\dfrac{2}{63\cdot65}\)
\(=1-\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{61\cdot63}+\dfrac{2}{63\cdot65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{61}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
\(A=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{37\cdot39}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{37}-\dfrac{1}{39}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{38}{39}< \dfrac{1}{2}\)
\(B=\frac{2^3}{3.5}+\frac{2^3}{5.7}+....+\frac{2^3}{101.103}\)
\(\Rightarrow\frac{1}{2^2}.B=\frac{2}{3.5}+\frac{2}{4.7}+....+\frac{2}{101.103}\)
\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\)
\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)
\(\Rightarrow B=\frac{100}{309}:\frac{1}{4}=\frac{400}{309}\)
\(=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(=4\cdot\frac{100}{309}=\frac{400}{309}\)
\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
Ta có: \(B=1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-\dfrac{2}{7.9}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)
\(=1-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{61.63}+\dfrac{2}{63.65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}=\dfrac{133}{195}.\)
Vậy \(B=\dfrac{133}{195}.\)
\(\frac{2}{3.5}+\frac{2}{5.7}+.................+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..................+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{32}{99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{37}-\frac{1}{39}\)
\(B=\frac{1}{3}-\frac{1}{39}=\frac{13}{39}-\frac{1}{39}=\frac{12}{39}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}\)