K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Bài 1:

\(\left(x+4\right)\left(y+3\right)=3\)

\(\Rightarrow\left[{}\begin{matrix}x+4=3\\y+3=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3-4\\y=3-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

Vậy \(x=-1;y=0\)

b) \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)

\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{4}{3}-x=-\dfrac{1}{6}\)

\(\Leftrightarrow-x=-\dfrac{1}{6}-\dfrac{4}{3}\)

\(\Leftrightarrow-x=-\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\)

2 tháng 6 2017

(x+4)(y+3) =3 = 1.3 = 3.1 =(-1)(-3)=(-3)(-1)

x+4 1 3 -1 -3
y+3 3 1 -3 -1
x -3 -1 -5 -7
y 0 -2 -6 -4

23 tháng 6 2017

Theo bài ra :

\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)

<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)

Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)

Ta có bảng xét dấu :

\(-\infty\) -5 -1 1 3 \(+\infty\)
(x+5) - 0 + + + +
x2-1 + + 0 - 0 + +
3-x + + + + 0 -
A - (loại) 0 (loại) +(t.m) 0(loại) -(loại) 0(loại) +(t.m) 0(loại) -(loại)

Từ bảng xét dấu trên suy ra :

\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)

23 tháng 6 2017

\(\infty\) nghĩa là gì vậy bạn

3 tháng 6 2017

C1:

\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)

Vậy \(B>A\)

C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)

Dễ thấy

\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(B>A\)

13 tháng 7 2017

What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!bucminh

13 tháng 7 2017

tui mới lớp 7 mà

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)

\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)

\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)

1: ĐKXĐ: \(x^3-6x^2+11x-6< >0\)

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\ne0\)

hay \(x\notin\left\{1;2;3\right\}\)

2; ĐKXĐ: \(\left\{{}\begin{matrix}3-2x>=0\\x+1< >-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\x< >-2\end{matrix}\right.\)

3: ĐKXĐ: \(\left\{{}\begin{matrix}x+2< >0\\x-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< >-2\\x< >1\end{matrix}\right.\Leftrightarrow x\in R\)

27 tháng 7 2017

Vì A\(\cap\)B nên cả A và B đều chứa A,B={0;1;2;3;4}

Vì A\B nên {-3;-2} chỉ \(\in\)A mà \(\notin\) B

Vì B\A nên {6;9;10} chỉ \(\in\) B mà \(\notin\) A

Vậy: A={-3;-2;0;1;2;3;4}

B={0;1;2;3;4;6;9;10}

14 tháng 3 2017

Thay haha= x ; khocroi là y nhé bạn =='.

Theo đề bài ta có :

\(\left\{{}\begin{matrix}x+y=23\\x\cdot y=132\\y-x=1\end{matrix}\right.\left(ĐK:x,y>0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\y-\left(23-y\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\2y=24\Rightarrow y=12\end{matrix}\right.\)

Thay y = 12 vào hai đẳng thức trên ta được :

\(x+12=23\Rightarrow x=11\) hay \(x\cdot12=132\Rightarrow x=11\)

Vậy \(\left\{{}\begin{matrix}x=11\\y=12\end{matrix}\right.\) hay haha\(=11\); khocroi\(=12\).

14 tháng 3 2017

jij

14 tháng 6 2017

\(VT=\dfrac{1+cos2x}{cos2x}\times\dfrac{1+cos4x}{sin4x}\) (*)

Ta có: theo công thức hạ bậc có: \(cos^2x=\dfrac{1+cos2x}{2}\Leftrightarrow1+cos2x=2cos^2x\) (1)

Ta có: \(cos2x=1-sin^2x\Rightarrow cos4x=1-2sin^22x\) (2)

Tương Tự có \(sin2x=2sinx\times cosx\Rightarrow sin4x=2sin2x\times cos2x\) (3)

Thay (1),(2),(3) vào (*) ta được: \(VT=\dfrac{2cos^2x}{cos2x}\times\dfrac{1+\left(1-2sin^22x\right)}{2sin2x\times cos2x}\)

\(VT=\dfrac{2cos^2x\times2\left(1-sin^22x\right)}{cos^22x\times2sin2x}\)\(1-sin^22x=cos^22x\)

\(\Rightarrow VT=\dfrac{2cos^2x\times cos^22x}{cos^22x\times2sinx\times cosx}=\dfrac{cosx}{sinx}=tanx\left(đpcm\right)\)

14 tháng 6 2017

đoạn cuối nhầm nha \(VT=\dfrac{cosx}{sinx}=cotx\left(đpcm\right)\)