K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

   \(B=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(2B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(2B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}\)

\(2B=\frac{32}{99}\)

  \(B=\frac{32}{99}:2\)

  \(B=\frac{16}{99}\)

11 tháng 5 2018

\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}.\frac{32}{99}\)

\(\Rightarrow M=\frac{16}{99}\)

11 tháng 5 2018

\(M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5.}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{16}{99}\)

11 tháng 5 2019

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

11 tháng 5 2019

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

5 tháng 4 2016

Mk bik câu B nè!

2B = 2/3.5 + 2/5.7 + 2/7.9 +.......+2/97.99

2B = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/97 - 1/99

2B = 1/3 - 1/99

2B = 32/99

=> B = 16/99 

5 tháng 4 2016

Bạn có chắc là đúng ko vậy

29 tháng 3 2018

   1/1x3 + 1/3x5 + 1/5x7 + ...............................+ 1/97x99

=1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 +.............................+ 1/97-1/99

=1-1/99

=98/99

19 tháng 3 2023

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{99}\)

\(B=\dfrac{99}{99}-\dfrac{1}{99}\)

\(B=\dfrac{98}{99}\)

#YVA

22 tháng 3 2023

B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)

B=\(\dfrac{98}{99}:2\)

B=\(\dfrac{49}{99}\)

11 tháng 4 2021

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)

11 tháng 4 2021

bạn làm thiếu rồi

phải chia 2 nữa

13 tháng 7 2018

\(A=\left(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+.........+\frac{1}{96\cdot98}\right)-\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{97\cdot99}\right)\)

\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+....+\frac{2}{96\cdot98}\right)-\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{97\cdot99}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{96}-\frac{1}{98}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{98}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=\frac{12}{49}-\frac{16}{99}=\frac{404}{4851}\)

13 tháng 7 2018

sai đề nhé?!

27 tháng 6 2015

 

\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)

\(\frac{99}{20}-2x=\frac{49}{99}\)

\(2x=\frac{99}{20}-\frac{49}{99}\)

\(2x=\frac{8821}{1980}\)

\(x=\frac{8821}{1980}:2\)

\(x=\frac{8821}{3960}\)