Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được
\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)
\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)
\(\Rightarrow2B=3^{52}-3\)
\(\Rightarrow B=\frac{3^{52}-3}{2}\)
\(1+2+3^2+3^3+...+3^{50}+3^{51}\)
Đặt tổng trên là A ta có :
\(A=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
\(A=\frac{3^{52}-3}{2}\)
Vậy...
Cbht
a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)
=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100
=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101
=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )
=> 2A = 3^101 - 3
=> A = \(\dfrac{3^{101}-3}{2}\)
Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)
b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )
=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4
=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4
=> A chia hết cho 4
Vậy A chia hết cho 4 ( điều phải chứng minh )
Chúc bạn hoc tốt! ~
A=3+3^2+3^2+...+3^100
=>2A=3^2+3^3+3^4+...+3^101
=>2A-A=(3^2+3^3+3^4+...+3^101) - (3+3^2+3^2+...+3^100)
=>A=3^101-3
Vậy A=3^101-3
Chú thích:^ là mũ
S = 3 + 32 + 33 + ............... + 3100
S = ( 3 + 32 + 33 + 34 ) + ....................... + ( 397 + 398 + 399 + 3100 )
S = 3 . ( 1 + 3 + 32 + 33 ) + ................ + 397 . ( 1 + 3 + 32 + 33 )
S = 3 . 40 + .................. + 397 . 40
S = 120( 32 + ............... + 397 )
Mà 120 \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
S = (3+3^2)+(3^3+3^4)+....+(3^99+3^100)
= 3.(1+3)+3^3.(1+3)+....+3^99.(1+3)
= 3.4+3^3.4+...+3^99.4
= 4.(3+3^3+....+3^99) chia hết cho 4
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
S=3+32+33+....+360
2S=32+33+...+361
2S-S=(32+33+...+361-3+32+33+...+360)
S=361-3
mk không chắc đâu nhé.
S=3+32+33+34+....+360
2.S=3+33+34+35+....+361
2.S-S=361-3
vậy S=3mũ 61-1
câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé
\(b=1+3+3^2+3^3+.....+3^{99}+3^{100}\)
\(\Leftrightarrow3b=3+3^2+3^3+3^4+....+3^{100}+3^{101}\)
\(\Leftrightarrow2b=3^{101}-1\)
\(\Leftrightarrow b=\dfrac{3^{101}-1}{2}\)
`B=1+3+3^2+3^3+....+3^99+3^100`
`3B=3+3^2+3^3+3^4+...+3^100+3^101`
`=>3B-B=3+3^2+3^3+...+3^101-1-3-3^2-....-3^100`
`=>2B=3^101-1`
`=>B=[3^101-1]/2`