Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 + 4 + 6 + ... + 100
\(=\frac{\left[\left(100-2\right):2+1\right].\left(100+2\right)}{2}=2550\)
b) 1 + 3 + 7 + ... + 99
\(=\frac{\left[\left(99-1\right):2+1\right].\left(99+1\right)}{2}=2500\)
c) 1 + 5 + 9 + 13 + ... + 49
\(=\frac{\left[\left(49-1\right):4+1\right].\left(49+1\right)}{2}=325\)
a, 13/6+5/8 : -3/4 - 7/12.4
= 13/6 + -5/6-7/3
=8/6-7/3
= -6/6
= -1
b, ( 73/5 - 21/3) + ( 4/3-43/5 )
= 73/5-21/3+4/3-43/5
=( 73/5-43/5)-(21/3-4/3)
= 6-17/3
=1/3
c, 7/5.4/9 +7/5: 9/16- 14/10.2/9
= 7/5.4/9 +7/5.16/9 - 14/45
=7/5.(4/9+16/9)-14/45
=7/5.20/9-14/45
= 140/45 - 14/45
= 126/45
Xong rùi nè! Nhưng bạn kiểm tra lại giùm nhé vì làm vào ban đêm nên hơi bất tiện
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
a. \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4}{20}+\frac{15}{20}+\frac{2}{20}\)
= \(\frac{21}{20}\)
b. \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5}{6}-\frac{2}{6}+\frac{1}{6}\)
= \(\frac{4}{6}=\frac{2}{3}\)
c. \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{50}{8}\)
= \(\frac{-47}{8}\)
a) \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4+15+2}{20}\)
= \(\frac{21}{20}\)
b) \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5-2+1}{6}\)
= \(\frac{4}{6}\)
c) \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{25}{4}\)
= \(-\frac{47}{8}\)
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)