K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

B1:

5,3 . 4,7 + ( -1,7 ) . 5,3 - 5,9

= 5,3 . (4,7 - 1,7 ) - 5,9

= 5,3 . 3 - 5,9

= 15,9 - 5,9

= 10

Chúc bn học tốt !

26 tháng 3 2020

Bài 2:

a) \(\sqrt{2x+1}=3\)

\(\Rightarrow\sqrt{2x+1}=\sqrt{9}\)

\(\Rightarrow2x+1=9\)

\(\Rightarrow2x=9-1\)

\(\Rightarrow2x=8\)

\(\Rightarrow x=8:2\)

\(\Rightarrow x=4\)

Vậy \(x=4.\)

b) \(\frac{1}{3}+x=2,\left(6\right)\)

\(\Rightarrow\frac{1}{3}+x=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}-\frac{1}{3}\)

\(\Rightarrow x=\frac{7}{3}\)

Vậy \(x=\frac{7}{3}.\)

Chúc bạn học tốt!

Câu 1 :

a) 8. ( \(-\frac{1}{2}\))2

= 8. \(\frac{1}{4}\)

= 2

b) 5,3 . 4,7 + (-1,7) . 5,3 - 5,9

= 5,3 . [4,7 + (-1,7)] - 5,9

= 5,3 . 3 - 5,9

= 15,9 - 5,9

= 10,9

c) \(\frac{2}{3} + (-\frac{1}{3}) + \frac{7}{15}\)

\(=\frac{1}{3} + \frac{7}{15}\)

\(= \frac{5}{15} + \frac{7}{15}\)

\(=\frac{12}{15}\)

d) 40 : {[11 + (26-33)]}

= 40 : {[11 + (26-27)]}

= 40 : {[11 + (-1)]}

= 40 : 10

= 4

22 tháng 12 2022

\(a.5,3.4,7+\left(-17\right).5,3-5,9\)

\(=5,3.\left[4,7+\left(-17\right)\right]-5,9\)

\(=5,3.\left(-12,3\right)-5,9\)

\(=-65,19-5,9=-71,09\)

\(b.\dfrac{2}{3}+\dfrac{-1}{3}+\dfrac{7}{15}=\dfrac{10}{15}+\dfrac{-5}{15}+\dfrac{7}{15}=\dfrac{12}{15}=\dfrac{4}{5}\)

28 tháng 12 2023

a) 5,3.4,7+(−1,7).5,3−5,95,3.4,7+(1,7).5,35,9

=5,3.(4,7−1,7)−5,9=5,3.(4,71,7)5,9

=5,3.3−5,9=5,3.35,9

=15,9−5,9=10=15,95,9=10

b) 23+−13+71532+31+157

=2+(−1)3+715=32+(1)+157

=5+715=1215=45=155+7=1512=54.

26 tháng 7 2016

b1

A=(125+2)2 - (125-2)2 = 1272 - 123= 1000

19 tháng 8 2016

a) = 1000

tíck mik nha

9 tháng 10 2020

1.

a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )

9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)

=> Với \(-2< x< \frac{3}{2}\)thì tmđb

b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)

Vì x2 + 3 ≥ 3 > 0 ∀ x

nên ta chỉ cần xét x( x - 2 ) > 0

1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)

2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)

Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb

9 tháng 10 2020

2.

A = x2 + 4x = x( x + 4 )

Để A dương => A > 0

<=> x( x + 4 ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)

2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)

Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb

B = ( x - 3 )( x + 7 )

Để B dương => B > 0

<=> ( x - 3 )( x + 7 ) > 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)

2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)

Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb

C = ( 1/2 - x )( 1/3 - x )

Để C dương => C > 0

<=> ( 1/2 - x )( 1/3 - x ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)

2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)

Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb

13 tháng 8 2020

1. Thay x = 1 vào đa thức f (x) = ax2 + bx + c . Ta có :

f ( x ) = a.12 + b.1 + c

         = a + b + c

         = 0

Vậy x = 1 là nghiệm của f ( x )

13 tháng 8 2020

Bài 1 :

Giả sử x = 1 là nghiệm của đa thức f (x) = ax2 + bx + c

=> f (x) = a . 12 + b . 1 + c = 0

<=> f(x) = a + b + c = 0 

Vậy nếu a + b + c = 0 thì x = 1 là nghiệm của đa thứ f (x)

Bài 2 :

a) \(\left(x-2\right)\left(2x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy nghiệm của đa thức là x=2 hoặc x=4

b) \(\left(3x-9\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-9=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

Vậy .................

c) \(\left(x-3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=3\)

Vậy .............

d) \(\left(x^2+2\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow x^2-3=0\left(x^2+2>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy...............

10 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:

   \(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)

  +  Ta có: 5 \(\equiv\)  1 (mod 2) ⇒  \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2) 

⇒ \(5^{1^{8^{9^0}}}\)  \(\equiv\) 1 (mod2)

   Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó

\(19^{5^{1^{8^{9^0}}}}\) =  \(19^{2k+1}\)  = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)\(\overline{..9}\) (1)

+ Mặt khác:  9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4) 

⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)

Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó 

\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\)  (2)

Kết hợp (1) và (2) ta có: 

A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)