Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt (x2 +x ) = t ta có:
=> t2 + 4t - 12 = 0
=> ( t + 2)2 - 16 = 0
=> ( t + 2)2 - 42 = 0
=> ( t -2)( t + 6) = 0
=>\(\left[{}\begin{matrix}t-2=0\\t+6=0\end{matrix}\right.\)
Thay t = x2 + x
- x2 + x -2 = 0 => (x+2)(x-1) = 0 => \(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
- x2 + x + 6 = 0 => (x+3)(x-2) = 0 => \(\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
dòng thứ tư câu a quên chưa chuyển vế 15-9 rồi kìa phải là 45x=6 mới đúng nha
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
a,\(3x\left(x-1\right)+x-1=0\)
\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(3x+1\right).\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
c,\(\left(2x-1\right)^2-25=0\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
a)\(x^2+3x+6=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)
\(\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)
Vì bình phương luôn lớn hơn hoặc bằng 0
Nên PT vô nghiệm
b)\(x^2-2x-3=0\)
\(x^2-3x+x-3=0\)
\(\left(x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d)\(x^3-2x^2-x+2=0\)
\(x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
x - 2 = 0 x=2
c)\(2x^2+7x+3=0\)
\(2x^2+x+6x+3=0\)
\(x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)
a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)
\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)
\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)
\(\Leftrightarrow x^2-6x-1+16-x^2=0\)
\(\Leftrightarrow-6x+15=0\)
\(\Leftrightarrow6x=15\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)