K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

\(x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\Leftrightarrow\left(x-1\right)x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=-1\end{matrix}\right..Vậy:x\in\left\{-1;0;-1\right\}\)

\(x^3+4x=0\Leftrightarrow x\left(x^2+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+4=0\end{matrix}\right.mà:x^2+4\ge0+4=4\Rightarrow x=0\)

\(\left(x+2\right)^2=x+2\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
24 tháng 9 2020

            Bài làm :

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) Sửa đề : 5x3 + x2 - 4x + 9 = 0

<=>( 5x3 + 5 ) + (x2 - 4x +4)=0

<=> 5(x3 + 1) + (x-2)2 = 0

<=> 5(x+1)(x2 - x +1) + (x+2)2 =0

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)

24 tháng 9 2020

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0

<=> x = 0 hoặc x = -3 hoặc x = 2

27 tháng 9 2020

a) \(3x^3-12x=0\)

=> \(3x\left(x^2-4\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)

=> \(x^2\left(x-3\right)-4x+12=0\)

=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)

=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)

=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)

d) \(x^2-4x-21=0\)

=> \(x^2+3x-7x-21=0\)

=> \(x\left(x+3\right)-7\left(x+3\right)=0\)

=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (x + 1)(3x - 10) = 0

=> x = -1 hoặc x = 10/3

27 tháng 9 2020

a) \(3x^3-12x=0\)

\(\Leftrightarrow3x\left(x^2-4\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)

27 tháng 9 2020

Ta có : 3x3 - 12x = 0

=> 3x(x2 - 4) = 0

=> x(x - 2)(x + 2) = 0

=> \(x\in\left\{0;2;-2\right\}\)

b) x2(x - 3) + 12 - 4x = 0

=> x2(x - 3) - 4(x - 3) = 0

=> (x2 - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)

Vậy \(x\in\left\{-2;2;3\right\}\)

c) (3x - 1)2 - (2x - 3)2 = 0

=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0

=> (x + 2)(5x - 4) = 0

=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)

Vậy \(x\in\left\{-2;0,8\right\}\)

d) x2 - 4x - 21 = 0

=> x2 - 7x + 3x - 21 = 0

=> x(x - 7) + 3(x - 7) = 0

=> (x + 3)(x - 7) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)

Vậy \(x\in\left\{-3;7\right\}\)

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (3x - 10)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)

Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)