\(\left(m+2\right)x+\left(m-3\right)y-m+8=0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2019

1/ Gọi \(\left(x_0;y_0\right)\) là điểm cố định mà đường thẳng đi qua

\(\Rightarrow\left(m+2\right)x_0+\left(m-3\right)y_0-m+8=0\) \(\forall m\)

\(\Rightarrow m\left(x_0+y_0-1\right)+2x_0-3y_0+8=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=2\end{matrix}\right.\)

2/ Ta có đường thẳng \(y=\left(m-1\right)x+2\) luôn đi qua điểm cố định \(A\left(0;2\right)\)

\(\Rightarrow\) Khoảng cách từ O đến d luôn \(\le OA\)

\(\Rightarrow\) Khoảng cách là lớn nhất khi \(d\perp OA\)

\(A\in Oy\Rightarrow d\perp Oy\)

\(\Rightarrow m-1=0\Rightarrow m=1\)

3 tháng 8 2017

a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua

Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)

\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)

Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)

Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định 

b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)

Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)

Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)

Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)

Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)

5 tháng 8 2017

điểm cố định

D(0;2)

OD có pt là truc tung

=> m-1 =0 => m=1

y=2

m =1 là giá trị cần tìm

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

25 tháng 11 2022

Bài 1:

Gọi A,B lần lượt là giao của (d) với Ox,Oy

=>\(A\left(-\dfrac{1}{m^2+1};0\right);B\left(0;1\right)\)

=>OA=1/|m^2+1|; OB=1

Theo đề, ta có: 1/2*OA*OB=1/8

=>OA*OB=1/4

=>1/|m^2+1|=1/4

=>m^2+1=4

=>m^2=3

hay \(m=\pm\sqrt{3}\)