K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

Bài 1:

a: Xét ΔABD có E,I lần lượt là trung điểm của BA,BD

=>EI là đường trung bình của ΔABD

=>EI//AD và EI=AD/2

EI//AD

D\(\in\)AC

Do đó: EI//AC

Xét ΔBDC có

I,M lần lượt là trung điểm của BD,BC

=>IM là đường trung bình của ΔBDC

=>IM//DC và IM=DC/2

IM//DC

D\(\in\)AC

Do đó: IM//AC

IM//AC

EI//AC
IM,EI có điểm chung là I

Do đó: E,I,M thẳng hàng

Xét ΔBEC có

M,K lần lượt là trung điểm của CB,CE

=>MK là đường trung bình của ΔBEC

=>MK//EB và MK=EB/2

MK//EB

E\(\in\)AB

Do đó: MK//AB

Xét ΔACE có

D,K lần lượt là trung điểm của CA,CE
=>DK là đường trung bình của ΔAEC

=>DK//AE và DK=AE/2

DK//AE

E\(\in\)AB

Do đó: DK//AB

DK//AB

MK//AB

DK,MK có điểm chung là K

Do đó: D,M,K thẳng hàng

b: MI=DC/2

EI=AD/2

mà AD=DC

nên MI=EI

=>I là trung điểm của ME

MK=BE/2

DK=AE/2

mà BE=AE

nên MK=DK

=>K là trung điểm của DM

Xét ΔMED có

I,K lần lượt là trung điểm của ME,MD

=>IK là đường trung bình

=>IK//ED và IK=ED/2

c: Xét ΔABC có

E,D lần lượt là trung điểm của AB,AC

=>ED là đường trung bình của ΔABC

=>\(ED=\dfrac{BC}{2}\)

\(IK=\dfrac{ED}{2}=\dfrac{BC}{2}:2=\dfrac{BC}{4}=\dfrac{4}{4}=\dfrac{4}{4}=1\left(cm\right)\)

29 tháng 11 2023

Cậu giúp dc mik câu 2 k ạ chứ mình ngồi mãi mà làm k ra hichic

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

29 tháng 11 2023

a: ΔABC cân tại A

=>AB=AC

mà AB=8

nên AC=8

Xét ΔDAB có

E,M lần lượt là trung điểm của DA,DB

=>EM là đường trung bình của ΔDAB

=>EM//AB và \(EM=\dfrac{AB}{2}=4\)

Xét ΔDBC có

M,F lần lượt là trung điểm của DB,DC

=>MF là đường trung bình của ΔDBC

=>MF//BC và \(MF=\dfrac{BC}{2}=\dfrac{9}{2}=4,5\)

AD+DC=AC

=>2*ED+2*DF=AC

=>AC=2EF

=>\(EF=\dfrac{AC}{2}=4\)

Chu vi tam giác MEF là:

\(C_{MEF}=EF+EM+MF=4+4+4,5=12,5\)

b: \(\dfrac{AB+AD}{2}=\dfrac{AC+AD}{2}=\dfrac{AD+DC+AD}{2}\)

\(=\dfrac{2AD+2DF}{2}=AD+DF=AF\)

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0
19 tháng 1 2021


A B C D E i H

A) Ta có tam giác ABC cân

=> AB = AC 

Mà AD + DB = AB

      AE + EC = AC

=> DB = EC ( AD = AE gt)

b) đề phải là BE và CD cắt nhau tại I

Ta có AD = AE 

=> Tam giác ADE cân tại A

=> Góc ADE = Góc AED

=> Góc EDB = Góc DEC ( Cùng cộng nhau bằng 180 độ )

Xét Tam giác DEB và tám giác EDC có 

 BD = EC (cmt)

Góc EDB = Góc DEC (cmt)

DE là cạnh chung

=> Tam giác DEB và tam giác EDC (c-g-c)

=> Góc DBE = Góc ECD

=> Góc IBC = Góc ICB ( cùng cộng góc  DBE và Góc ECD bằng hai góc ABC và Góc ACB)

=> Tam giác IBC cân

c) Ta có tam giác ADE cân \(\Leftrightarrow\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Và tam giác ABC cân \(\Leftrightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2)\(\Leftrightarrow\widehat{ADE}=\widehat{ABC}\)

Hai góc này ở vị trí đồng vị bằng nhau 

=> DE // BC (đpcm)

d) Ta có điểm I cách đều cạnh AB và AC

=> AI là tia phân giác của tam giác ABC

trong tam giác cân tia phân giác cũng là đường cao 

=> AI vuông góc với BC

E) chứng minh HI là tia phân giác của tam giác BHC 

thì ba điểm thẳng hàng

16 tháng 6 2019

a) Xét ΔAMB và ΔAMC có

AB=AC(gt)

MB=MC(M là trung điểm của BC)

AM chung

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Sửa đề: AM=MD

Xét ΔAMC và ΔDMB có 

AM=DM(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

⇒AC=DB(Hai cạnh tương ứng)

c) Ta có: ΔAMC=ΔDMB(cmt)

nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

14 tháng 1 2021

o