K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: 3a+2b⋮17

⇔8(3a+2b)⋮17

Ta có: 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

=17(2a+b)⋮17

hay 8(3a+2b)+(10a+b)⋮17

mà 8(3a+2b)⋮17(cmt)

nên 10a+b⋮17(đpcm)

b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)

\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)

\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)

mà F(x)⋮3

nên F(0)⋮3; F(1)⋮3; F(-1)⋮3

hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3

Ta có: F(1)+F(-1)⋮3(cmt)

⇔a+b+c+a-b+c⋮3

hay 2a+2c⋮3

⇔a+c⋮3

mà c⋮3(cmt)

nên a⋮3(đpcm1)

Ta có: F(1)-F(-1)⋮3(cmt)

⇔a+b+c-a+b-c⋮3

hay 2b⋮3

mà 2\(⋮̸\)3

nên b⋮3(đpcm2)

6 tháng 4 2020

Tham khảo :

Ta có:

3a+2b⋮17

⇒9(3a+2b)⋮17⇔27a+18b⋮17(1)

Mặt khác: 17a+17b⋮17(2)

Từ (1);(2)⇒27a+18b−(17a+17b)⋮17

⇔10a+b⋮17

Ta có đpcm.

11 tháng 8 2016

Đặt A = 3a + 2b; B = 10a + b

Xét biểu thức: 2B - A = 2.(10a + b) - (3a + 2b)

                               = (20a + 2b) - (3a + 2b)

                              = 20a + 2b - 3a - 2b

                              = 17a

+ Nếu A chia hết cho 17, do 17a chia hết cho 17 => 2B chia hết cho 17

Mà (2;17)=1 => B chia hết cho 17

+ Nếu B chia hết cho 17 => 2B chia hết cho 17, do 17a chia hết cho 17 

=> A chia hết cho 17

Vậy 3a + 2b chia hết cho <=> 10a + b chia hết cho 17 (a,b thuộc Z) (đpcm)

11 tháng 8 2016

taco;17achia het cho17

suy ra 17a+3a+2b chia het cho17

suy ra20a+2bchia het cho17

rút gọn cho 2

suyra 10a+b chia hết cho 17

30 tháng 1 2020

Ta có 34a+17b=17(2a+b) chia hết cho 17
ta sẽ lấy 34a+17b trừ cho 10a+b ta có
24a+16b mà cả 2 số kia chia hết cho 17 nên
24a+16b chia hết cho 17 <=> 8(3a+2b) chia hết cho 17
Mà (8,17)=1 => 3a+2b chia hết cho 17 (Đpcm)

1: Ta có:ABCD là hình chữ nhật

nên AB=CD;AD=BC

2: Xét tứ giác ABCD có 

AB=CD

AD=BC

Do đó: ABCD là hình bình hành

Xét ΔADE và ΔCBF có 

\(\widehat{D}=\widehat{B}\)

AD=CB

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: \(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{AEC}=\widehat{CFA}\)

Xét tứ giác AECF có

\(\widehat{AEC}=\widehat{CFA}\)

\(\widehat{FAE}=\widehat{FCE}\)

Do đó: AECF là hình bình hành

Suy ra: AE//CF

25 tháng 2 2018

+, 3a+2b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 27a + 18b chia hết cho 17

Mà 17a và 17b đều chia hết cho 17

=> 27a+18b-17a-17b chia hết cho 17

=> 10a+b chia hết cho 17

+, 10a+b chia hết cho 17

=> 10a+b+17a+17b chia hết cho 17

=> 27a+18b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )

Vậy ............

Tk mk nha

2 tháng 7 2018

\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)

\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)

\(10a+b⋮17\)

\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)

\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)

\(\Rightarrow30a+20b-30a-3b⋮17\)

\(\Rightarrow17b⋮17\)

Có \(17⋮17\)nên \(10a+b⋮17\)

12 tháng 9 2017

a, a + b = ab 

=> a = ab - b

=> a = b(a - 1) (*)

=> \(\frac{a}{b}=a-1\) (1)

b, Vì \(a+b=\frac{a}{b}\) (2)

Từ (1) và (2) => b = -1

c, Thay b vào (*) ta có: a = -a + 1 => -2a = -1 => a = \(\frac{1}{2}\)

4 tháng 11 2017

Theo bài ra ta có:

(3a+2b) ⋮ 17 => 3a +2b +17a ⋮ 17 (vì 17⋮ 17)

=> 10a +2b ⋮ 17

<=> 2.(10a +b ) ⋮ 17

Mà (2;7)=1

=> 10a+b ⋮ 17 => Đpcm

Vậy (3a +2b) ⋮ 17 <=> (10a +b)⋮ 17