Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ DP vuông góc với AC
=> \(\frac{AI}{AD}=2-\sqrt{2}\)
Chuyển AI/AD về 3 cạnh tam giác. Sau đó sử dụng BDT=> Tam giác ABC vuông cân
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Bài 1:
a) tan83° - cotg7° = cotg7° - cotg7° = 0
b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°
= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°
= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)
= 1 + 1
= 2