Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: tam giác ABC = tam giác DEF
=> góc A = góc D
góc B = góc E
góc C = góc F
Ta có: góc A + góc B + góc C = 1800
1300 + góc C = 1800
góc C = 1800-1300 = 500
Ta có: góc A + góc B = 1300
góc A + 550 = 1300
góc A = 1300 - 550 =750
Vậy góc A = góc D = 750
góc B = góc E = 550
góc C = góc F = 500
2/ Ta có: tam giác DEF = tam giác MNP
=> DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10 cm
Mà NP - MP = EF - FD = 2 cm
EF = (10 + 2) : 2 = 6 (cm)
FD = (10 - 2) : 2 = 4 (cm)
Vậy DE = MN = 3 cm
EF = NP = 6 cm
FD = MP = 4 cm
1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o
hay 130o + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o
Vì ΔABC = ΔDEF nên ta có:
\(\widehat{C}\) = \(\widehat{F}\) = 50o
\(\widehat{E}\) = \(\widehat{B}\) = 55o
Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o
\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o
\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o
Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o
\(\widehat{B}\) = \(\widehat{E}\) = 55o
\(\widehat{C}\) = \(\widehat{F}\) = 50o
2) ΔDEF = ΔMNP nên:
\(\Rightarrow\) DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10cm
mà ΔDEF = ΔMNP
\(\Rightarrow\) NP - MP = EF - FD = 2cm
\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm
FD = 6cm - 2cm = 4cm
Vậy: DE= MN = 3cm
EF = NP = 6cm
FD = PM = 4cm
Kẻ BH vuông góc với AC ( H thuộc AC )
Áp dụng định lý pitago dô !!!
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
a) bằng nhau trường hợp cạnh huyền (AB=AC) _ góc nhọn (BAC^)
b) ABD^ + HBC^ = ABC^
và ACE^ + HCB^ = ACB^
Mà ABD^ = ACE^ (từ 2 tam giác bằng nhau của câu a suy ra)
và ABC^ = ACB^ (gt)
=> HBC^ = HCB^ hay tam giác BHC cân tại H
c) từ kq câu a => AE = AD hay tam giác EAD cân tại A
=> AED^ = (180o - A^)/2 (1)
tam giác ABC cân tại A => ABC^ = (180o - A^)/2 (2)
Từ (1) và (2) => AED^ = ABC^
Mà 2 góc này ở vị trí đồng vị => ED // BC
2) Gọi a,b,c là độ lớn của 3 góc A,B,C
Theo đề bài ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\hept{\begin{cases}a=30\\b=60\\c=90\end{cases}}\)
Vậy 3 góc A,B,C lần lượt là 30,60 và 90 độ
1) Áp dụng t/c dãy tỉ số bằng nhau:
\(a=\frac{b}{3}=\frac{c}{4}=\frac{3a-2b+2c}{3-6+8}=\frac{55}{5}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\\b=33\\c=44\end{cases}}\)
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
Bài 1:
ΔABC=ΔDEF
nên \(\widehat{A}=\widehat{D}=90^0;\widehat{B}=\widehat{E};\widehat{C}=\widehat{F}\)
mà \(\widehat{B}-\widehat{C}=20^0\)
nên \(\widehat{E}-\widehat{F}=20^0\)
mà \(\widehat{E}+\widehat{F}=90^0\)
nên \(\widehat{E}=\dfrac{1}{2}\left(20^0+90^0\right)=55^0\)
=>\(\widehat{F}=35^0\)