\(\ge2y\). Tìm GTNN của biểu thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)

\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$

Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)

Áp dụng BĐT Cô-si :

\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)

\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)

Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)

Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

25 tháng 4 2019

Biến đổi từ giả thiết

\(x^3+y^3+6xy\le8\)

\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)

\(\Leftrightarrow x+y-2\le0\)

(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))

\(\Leftrightarrow x+y\le2\)

Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)

                                 \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)

Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)

               \(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)

                 \(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)

Dấu "=" <=> a= b = 1

20 tháng 5 2017

Cho các số thực dương x,y nha

20 tháng 5 2017

bên h h có đấy

6 tháng 7 2020

a

Dễ thấy theo AM - GM ta có:

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)

Đẳng thức xảy ra tại \(x=2y\)

b

\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)

\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)

Đẳng thức xảy ra tại x=0

10 tháng 8 2020

\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+\frac{500}{xy}\)

\(\ge\frac{5}{\left(x+y\right)^2}+\frac{500}{\frac{\left(x+y\right)^2}{2}}=5+1000=1005\)

Dấu "=" xảy ra \(< =>x=y=\frac{1}{2}\)

đoán là sai

10 tháng 8 2020

\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1001}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1001}{\frac{\left(x+y\right)^2}{2}}\ge4+2002=2006\)

Dấu "=" xảy ra khi  x = y = 1/2

3 tháng 1 2021

\(P\ge\frac{x+y+z}{2}\ge\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\frac{1}{2}\)

"=" khi \(x=y=z=\frac{1}{3}\)