K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

1.  \(6a^2-ab-15b^2=0\)

\(\Leftrightarrow6a^2-10ab+9ab-15b^2=0\)

\(\Leftrightarrow2a\left(3a-5b\right)+3b\left(3a-5b\right)=0\)

\(\Leftrightarrow\left(2a+3b\right)\left(3a-5b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3}{2}b\\a=\frac{5}{3}b\end{cases}}\)

-TH1:  \(a=\frac{-3}{2}b\)  thay vào M ta đc

\(M=\frac{11.\left(\frac{-3}{2}b\right)^2-2b.\frac{-3}{2}b+9b^2}{5\left(\frac{-3}{2}b\right)^2+3b.\frac{-3}{2}b+6b^2}=...\)

Tương tự cho TH2.

BÀi 3: b) Theo đề bài ta có Q(1) = 5; Q(14) = 9

Gọi số dư Q(x) chia cho (x-1)(x-14) là ax+b

=> Q(x) = P(x).(x-1)(x-14) + ax+b

Do đó Q(1) = P(x).(1-1)(1-14) + a.1 + b = a+b => a+b=5

và Q(14) = P(x).(14-1)(14-14) + a.14 + b = 14a+b => 14a+b=9

Giải hệ  \(\hept{\begin{cases}a+b=5\\14a+b=9\end{cases}}\)  tìm đc \(a=\frac{4}{13};b=\frac{61}{13}\)

Vậy số dư là  \(\frac{4}{13}x+\frac{61}{13}\)

23 tháng 11 2017

1) x ^ 2013 + y ^ 2014 = 0 . 

23 tháng 11 2017

#Nguyễn Đình Toàn giải rõ ra giúp tớ được khônggg

3 tháng 11 2016

Tìm a,b,c biết ax^3 + bx^2 + c chia hết x+2 và chia x^2 - 1 dư x + 5

ax³+bx²+c =ax³+2ax²+(b-2a)x²+2(b-2a)x-2(b-2a)x-4(b...
=ax²(x+2)+(b-2a)x(x+2)-2(b-2a)(x+2)+4(b...
=(x+2)[ax²+(b-2a)x-2(b-2a)]+4b-8a+c
ax³+bx²+c chia hết cho x+2 =>4b-8a+c=0. (1)
ax³+bx²+c =ax³-ax+bx²-b+ax+b+c
=(x²-1)(ax+b)+ax+b+c. chia cho x²-1 dư ax+b+c. đồng nhất hệ số của số dư với x+5 ta có a=1; b+c=5. (2)
Thay a=1 vào (1) => 4b+c=8 (3).
(3)-(2) => 3b=3 =>b=1. thay b=1 vào (2)=>c=4
ĐS: a=1; b=1; c=4.

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

7 tháng 2 2018

Bài 1:

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)\(B=a+\frac{2}{\sqrt{x}+1}\)a)Tính C=A:B.Tìm giá trị của C khi x=9.b)Tìm x để C<1.c)Tìm x nguyên để C nguyên.B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).1)CMR d luôn đi qua 1 điểm cố định.2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)Tìm m để hệ có nghiệm...
Đọc tiếp

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)

\(B=a+\frac{2}{\sqrt{x}+1}\)

a)Tính C=A:B.Tìm giá trị của C khi x=9.

b)Tìm x để C<1.

c)Tìm x nguyên để C nguyên.

B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).

1)CMR d luôn đi qua 1 điểm cố định.

2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.

B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Tìm m để hệ có nghiệm duy nhất thỏa mãn x+y=1.

B4.Cho tam giác ABC,AH vuông BC sao cho AH=BH=2CH.Kẻ BK vuông AC cắt AH ở I.M là trung điểm IH.CM cắt BK và AB lần lượt ở F và N.

1)CMR:I là trung điểm AH và tam giác ABC đồng dạng tam giác NAM.

2)Cho diện tích tam giác ABC là 3.Tính AN và diện tích tam giác IMF.

B5:Cho a,b,c>0 thỏa mãn a+b+c=3.

Tìm min \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)

 

1
10 tháng 1 2020

3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Để PT trên có nghiệm duy nhất

\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)

\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)

Từ (#) \(m^2x-x=3m^2-2m-1\)

\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)

\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)

Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)

=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)

Và x + y =1

\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)

\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)

\(\Leftrightarrow\frac{4m}{m+1}=0\)

\(\Rightarrow4m=0\Rightarrow m=0\)

Mik không giỏi dạng này nên có j sai ib ạ >: