Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)
\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)
2)
\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)
\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)
Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).
Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).
\(B=2a^2+b^2+c^2-ab+ac+bc\)
\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)
\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)
\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)
Dấu \(=\)khi \(a=b=c=0\).
Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).
1.
a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm)
suy ra đpcm
b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)
c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)
d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)
\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
câu 6 :
số hs nữ = 34 hs
số học sinh nam giỏi = hs nữ khá
=> số hs giỏi = số hs giỏi nữ+số học sinh nam giỏi = số hs nữ giỏi + số học sinh nữ khá = số học sinh giỏi cả lớp =34
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
Bài 2:
a: Ta có: \(2x^2+y^2-2xy+x+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vôlý\right)\)
b: Ta có: \(-x^2-26y^2+10xy-20y-150=0\)
\(\Leftrightarrow x^2-10xy+25y^2+y^2+20y+100+50=0\)
\(\Leftrightarrow\left(x-5y\right)^2+\left(y+10\right)^2+50=0\left(vôlý\right)\)
Bài 1:
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow2\left(ab+bc+ca\right)=0-1=-1\)hay \(ab+bc+ca=-\dfrac{1}{2}\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\)Ta có: \(P=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-2.\dfrac{1}{4}=\dfrac{1}{2}\)Vậy \(P=\dfrac{1}{2}\)