Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
\(=>2^x\cdot\left(\frac{1}{2}+\frac{8}{2}\right)=9\cdot2^5\)
\(=>2^x\cdot\frac{9}{2}=9\cdot2^5\)
\(=>2^x:2^5=9:\frac{9}{2}\)
\(=>2^{x-5}=2\)
\(=>2^{x-5}=2^1\)
\(=>x-5=1\)
\(=>x=1+5=6\)
"on có là phân giác của góc nox ko" đề pài mk thấy ko cko on mà pn
a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy x = 4 hoặc x = 5 hoặc x = 6
\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)
[ ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)
_Minh ngụy_
Tử số của A bằng:
Số số hạng: (2m-2)/2+1=2(m-1)/2+1=m
Tổng= (2+2m).m/2=2(m+1)/2=m.(m+1)
A=m.(m+1)/m=m+1
Câu B tương tự= n+1
Có A<B suy ra m+1<n+1
Suy ra m<n
T..i..c..k mk nha
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2m+2\right)\cdot m}{2}=\frac{2\left(m+1\right)\cdot m}{2}=\left(m+1\right)\cdot m\)
\(B=\frac{2+4+6+...+2n}{n}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2\left(n+1\right)\cdot n}{2}=\left(n+1\right)n\)
Vì A < B
\(\Rightarrow\left(m+1\right)\cdot m<\left(n+1\right)\cdot n\)
=> m < n
\(A=\left|x+19\right|+\left|y-5\right|+2020\)
Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y;2020>0\)
Suy ra : \(\left|x+19\right|+\left|y-5\right|+2020\ge2020\)
Dấu ''='' xảy ra : \(\hept{\begin{cases}x+19=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy GTNN A = 2020 <=> x = -19 ; y = 5
Tập hợp M các số tự nhiên x thỏa mãn x = a + b là:
M = { 79; 43 }
mik làm thiếu nhé bn sữa lại là:
Tập hợp M các số tự nhiên x thỏa mãn x = a + b
M = { 79; 43; 62; 60 }
Ta có: \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
\(\left(x+\frac{1}{2}\right)\times\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow x+\frac{1}{2}=0\)
\(x=0-\frac{1}{2}\)
\(x=-\frac{1}{2}\)
\(\Rightarrow\left(\frac{2}{3}-2x\right)=0\)
\(2x=\frac{2}{3}-0\)
\(2x=\frac{2}{3}\)
\(x=\frac{2}{3}\div2\)
\(x=\frac{1}{3}\)
Vạy tồn tại hai giá trị \(-\frac{1}{2}\) và \(\frac{1}{3}\)