K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)

Ta có :   \(\left(x-2\right)^2\ge0\) =>  \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)                 

Dấu " = "  xảy ra   \(\Leftrightarrow\)   \(\sqrt{\left(x-2\right)^2}=0\)            

                              \(\Leftrightarrow\)  \(x-2=0\)                  

                              \(\Leftrightarrow\)  x  =  2 

Vậy giá trị nhỏ nhất của A là :  \(\sqrt{21}\)      khi x  =  2

\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)      

Vì   \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)                  

Dấu "  =  "  xảy ra  \(\Leftrightarrow\)   \(\sqrt{\left(x-3\right)^2}=0\)                          

                                \(\Leftrightarrow\)  \(x-3=0\)                      

                                \(\Leftrightarrow\) \(x=3\)                             

Vậy giá trị nhỏ nhất của B là :  \(\sqrt{21}\)  khi x  =  3

14 tháng 9 2021

\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)

Vì  

15 tháng 9 2021

bạn viết câu hỏi dưới dạng trực quan để mn dễ hiểu nhé!

4 tháng 2 2022

\(i.x>\dfrac{3}{2}\)

\(m.x>\dfrac{2}{3}\)

\(o.x< \dfrac{2}{3}\)

\(ô.x\le\dfrac{5}{4}\)

\(ơ.mọi.x\in Z\)

\(y.x>\dfrac{-5}{6}\)

18 tháng 12 2020

a/ ĐKXĐ : \(-2x+3\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

b/ ĐKXĐ : \(3x+4\ge0\)

\(\Leftrightarrow x\ge-\dfrac{4}{3}\)

c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x

d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)

\(\Leftrightarrow3x+5< 0\)

\(\Leftrightarrow x< -\dfrac{5}{3}\)

e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)

P.s : không chắc lắm á!

 

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)