Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
a) Quy đồng mẫu thức và sử dụng hằng đẳng thức rồi rút gọn thu được x + 1 2 ( x − 1 )
b) Tương tự a) thu được 2 2 − y
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
\(x^2+2y^2-2xy+x-2y+1=0\)
\(4x^2+8y^2-8xy+4x-8y+4=0\)
\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)
\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)
\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)
=> KL...........
=>x^2-2xy+y^2+y^2+2y+1=0
=>(x-y)^2+(y+1)^2=0
=>x=y=-1
B=-2022-2023=-4045
\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)
\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)
\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)
Vì \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)
=>\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)
=>\(\left(x-2\right)^2+2\left(y^2+y+\dfrac{1}{4}\right)=0\)
=>\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)
mà \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)