K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

b)  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

c)  10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

20 tháng 7 2015

chính xác 100/100

 

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)

a) Ta có :

\(72=8.9\)

Ta thấy :

\(10^{28}⋮8\)

\(8⋮8\)

\(\Rightarrow10^{28}+8⋮8\)

Tổng các chữ số của \(10^{28}=1\)

Tổng các chữ số của \(8=8\)

\(\Rightarrow\)Tổng các chữ số của \(10^{28}+8=1+8=9⋮9\)

\(\Rightarrow10^{28}⋮8;9\)

\(\Rightarrow10^{28}⋮72\)

\(\Rightarrow F⋮72\left(đpcm\right)\)

b) Ta có :

 \(10^n+18n-1=10^n-1+18n=999...9\)( n chữ số 9 ) \(+18n\)

                              \(=9\left(111....1+2n\right)\)( n chữ số 1 )

Xét \(111...1+2n=111...1-n+3n\)

Dễ thấy tổng các chữ số của \(111...1\)là n

\(\Rightarrow111...1-n⋮3\)

\(\Rightarrow111...1-n+3n⋮3\)

\(\Rightarrow10^n+18n-1⋮27\)

\(\Rightarrow J⋮27\left(đpcm\right)\)

c) Ta có :

\(K=10^n+72n-1=10^n-1+72n\)

\(10^n-1=999...9\)( n - 1 chữ số 9 )

               \(=9\left(111...1\right)\)( n chữ số 1 )

\(K=10^n-1+72n=9\left(111...1\right)+72n\)

\(\Rightarrow K:9=111...1+8n=111...1-n+9n\)

Ta thấy :

\(111...1\)( n chữ số 1 ) có tổng các chữ số là n

\(\Rightarrow111...1-n⋮9\)

\(\Rightarrow K:9=111...1-n+9n⋮9\)

\(\Rightarrow K⋮81\left(đpcm\right)\)

8 tháng 1 2020

thank you bạn nha

2 tháng 11 2015

b, 10n-1-9+27n

=99...9 - 9n+27n

=9.(11...1 - n) +27 chia hết cho 27

 

a,Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

b,Ta có:

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

14 tháng 10 2017

a)Ta thấy 11..11 có tổng các chữ số là n.Ta có:

2n+11...1=2n+n=3n chia hết cho 3

10 tháng 1 2016

a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n

  =9.(111...11(n chu so 9)+2n)

  Xet 111...11(n chu so 9)+2n=111..11-n+3n

  De thay tong cac chu so cua 111....11(n chu so 1) la n

 =>111...11-n chia het cho 3

 =>111...11-n+3n chia het cho 3

 =>10^n+18n-1 chia het cho 27