Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
Bài làm
Gọi D là trung điểm của OC
Vì AD là đường trung truyến của tam giác AOC, mà N là trọng tâm
Nên \(ND=\frac{1}{3}AD\)( t/c đường trung tuyến )
Xét tam giác OBC có BD là đường trung tuyến, mà M là trọng tâm
Nên \(MD=\frac{1}{3}BD\)( t/c đường trung tuyến )
Xét tam giác ADB có\(\frac{ND}{AD}=\frac{MD}{BD}=\frac{MN}{AB}=\frac{1}{3}\)( Định lý Talet )
Bạn làm tương tự đối với 2 cạnh còn lại của tam giác MNP là MP và NP
Ta được \(\frac{MP}{AC}=\frac{1}{3}\) ; \(\frac{NP}{BC}=\frac{1}{\text{3}}\)
Từ đó suy ra \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}=\frac{1}{3}\)
\(\Rightarrow\)Tam giác MNP đồng dạng với ABC
Bạn nhớ soát lại bài. Có thể mình làm chưa đúng. Bạn nhé!
Chò(X0=x^11-2003x^10-2003x^9-2003^8-...-2003x-1004
tính f(2004)
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM
=>H,G,O thẳng hàng
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng
Gọi E là hình chiếu của A trên BC
F là hình chiếu của B trên AC
K là giao điểm của AE với MN
L là giao điểm của OM với AB
CM được MN//AB do có 2 trung điểm
Ta có AE vuông góc với BC và OM vuông góc với BC suy ra AE//OM
tương tự ON//BF
tứ giác AKML có AL//KM(MN//AB),AK//LM(AE//OM)
suy ra AKML là HBH suy ra LMK=LAK hay OMN=HAB
tương tự được ONM=HBA
suy ra tam giác OMN đồng dạng với tam giác HAB (g.g)
suy ra OM/AH=MN/AB
Mà MN/AB=1/2 do MN là đường trung bình của tam giác ABC
OM/AH=1/2
AH=2OM
ta có G là trọng tâm của tam giác ABC và AM là đường trung tuyến
suy ra GM/GA=/1/2
OM//AE suy ra OMG=HAG
xét tam giác OMG và tam giác HAG có
GM/GA=OM/AH=1/2
OMG=HAG
suy ra tam giác OMG đồng dạng với tam giác HAG (c.g.c)
Gọi H,K,I lần lượt là trung điểm AB,AC,BC\(\Rightarrow\) HK,KI,HI là các đ/TB \(\Delta ABC\) \(\Rightarrow\frac{HK}{BC}=\frac{1}{2},\frac{KI}{AB}=\frac{1}{2},\frac{HI}{AC}=\frac{1}{2}\) (1)
Vì M,N,P là trọng tâm của \(\Delta OBC,\Delta OAC,\Delta OAB\)
\(\Rightarrow\frac{OM}{OI}=\frac{ON}{OK}=\frac{OP}{OH}=\frac{2}{3}\)
Áp dụng Thales\(\Rightarrow NP\) //HK,MN//KI,MP//HI
\(\Rightarrow\frac{NP}{HK}=\frac{MN}{KI}=\frac{MP}{HI}=\frac{2}{3}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{NP}{BC}=\frac{MN}{AB}=\frac{MP}{AC}=\frac{1}{3}\Rightarrow\Delta ABC\sim\Delta MNP\)
B A C O M P N