Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nhớ là bạn đã đăng r.Ko có việc j làm thì cx đừng đăng lại chứ!!!!!!!!!1
BÀI 1 :
a) |-15|+(-27)+8+|-23|
= 15-27+8+23
=19
b) 5\(^8\):5\(^6\)+2\(^2\).3\(^3\)-2020\(^0\)
= 5\(^2\)+4.27-1
=25+108-1
=132
BÀI 2 :
a) 7\(^x\).49=7\(^{50}\)
=> 7\(^x\).7\(^2\)=7\(^{50}\)
=> 7\(^x\)=7\(^{50}\):7\(^2\)=7\(^{48}\)
=> x= 48
vậy x = 48
b) ( 3x - 1 )\(^3\) = 125
=> ( 3x - 1 )\(^3\) = 5\(^3\)
=> 3x - 1 = 5
=> 3x = 6
=> x = 2
Vậy x = 2
c) Câu c bạn viết lại đề bài nhé. Mk giải sau
1. A = (-2)(-3) - 5.|-5| + 125.\(\left(-\dfrac{1}{5}\right)^2\)
= 6 - 25 + 125.\(\dfrac{1}{25}\)
= -19 + 5
= -14
@Shine Anna
2. Tính:
a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)
=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)
=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)
=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)
b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)
=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)
=\(\dfrac{13}{4}\)
3. Tìm x
a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)
\(\left(x-5\right).\left(x-5\right)=8.18\)
\(\left(x-5\right)^2=144\)
\(x-5=\sqrt{144}\)
\(x-5=12\)
\(x=12+5\)
\(x=17\)
b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)
\(x^{10}-2^{10}=x^8-2^8\)
\(x^{10}+x^8=2^{10}+2^8\)
\(\Rightarrow x=2\)
gọi a là số học sinh trường đó
vì a+3 chia hết cho 20,25,30
nên a+3 là BC(20,25,30)
20=22.5
25=52
30=2.3.5
BCNN(20,25,30)=22.52.3=300
BC(20,25,30)=B(300)=\(\left\{0;300;600;900;1200;1500;...\right\}\)
vì 1105≤a+3≤1250
nên a+3=1200
vậy a=1197
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
Mk chỉ hướng dẫn thui nhé ! ( Thông cảm cho mk )
Bạn gộm các số lại với nhau sao cho xuất hiện số có thể chia hết cho số cần chứng minh .
Vd : 2 + 22 + 23 + 24 + ... + 298 + 299 chia hết cho 6
= ( 2 + 22 ) + ( 23 + 24 ) + ... + (298 + 299 )
= 6 + ( 23 + 24 ) + ... + (298 + 299 )
Sau đó bạn làm các số sau cũng xuất hiện số đó
= 6 + 22 . ( 2 + 22 ) + ... + 297 . ( 2 + 22 )
= 6.1 + 22.6 + ... + 297.6
Rồi bạn đưa số chung ra đầu và nó sẽ như thế này :
= 6 . ( 1 + 22 + ... + 297 ) chia hết cho 6
Các ý bạn đưa ra có thể làm theo ý mk VD
~ CHÚC BẠN THI HK TỐT NHÉ ! ~
bài 1) a) \(1+2+3+4+........+2005+2006\)
\(\Leftrightarrow\) \(\left(1+2006\right)+\left(2+2005\right)+........+\left(1003+1004\right)\)
\(\Leftrightarrow\) \(2007.\dfrac{2006}{2}=2007.1003=2013021\)
b) \(5+10+15+.......+2000+2005\)
\(\Leftrightarrow\) \(\left(2005+5\right)\left(2000+10\right)+.......+\left(1000+1010\right)\)
\(\Leftrightarrow\) \(2010.\dfrac{2005}{5}=2010.401=405010\)
c) \(140+136+132+.......+64+60\)
\(\Leftrightarrow\) \(\left(140+60\right)+\left(136+64\right)+.......+\left(100+100\right)\)
\(\Leftrightarrow\) \(200.10\) = \(2000\)
1)
a) \(1+2+3+4+.....+2005+2006\)
Số các số hạng của dãy trên là:
\((2006-1):1+1=2006\)
Tổng dãy là:
\(\dfrac{2006\left(2006+1\right)}{2}=2013021\)
b) \(5+10+15+.....+2000+2005\)
Số các số hạng của dãy là:
\((2005-5):5+1=401\)
Tổng dãy là:
\(\dfrac{401\left(2005+5\right)}{2}=403005\)
c)\(140+136+132+.....+64+60\)
\(=60+64+.....+132+136+140\)
Số số hạng của dãy là:
\((140-60):4+1=11\)
Tổng dãy là:
\(\dfrac{11\left(60+140\right)}{2}=1100\)