K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)

c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)

e, ntc: x-y

f, đối dấu --> ntc

g, như ý f

h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)

i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)

10 tháng 12 2017

thanks

28 tháng 11 2017

1)

a) \(89-\left(73-x\right)=20\)

\(\Leftrightarrow73-x=89-20\)

\(\Leftrightarrow73-x=69\)

\(\Leftrightarrow x=73-69\)

\(\Leftrightarrow x=4\)

Vậy \(x=4\)

b) \(\left(x+7\right)-25=13\)

\(\Leftrightarrow x+7=13+25\)

\(\Leftrightarrow x+7=38\)

\(\Leftrightarrow x=38-7\)

\(\Leftrightarrow x=31\)

Vậy \(x=31\)

c) \(140:\left(x-8\right)=7\)

\(\Leftrightarrow x-8=140:7\)

\(\Leftrightarrow x-8=20\)

\(\Leftrightarrow x=20+8\)

\(\Leftrightarrow x=28\)

Vậy \(x=28\)

d) \(6x+x=5^{11}:5^9+3^1\)

\(\Leftrightarrow7x=5^{11}:5^9+3^1\)

\(\Leftrightarrow7x=5^{11-9}+3^1\)

\(\Leftrightarrow7x=5^2+3^1\)

\(\Leftrightarrow7x=25+3\)

\(\Leftrightarrow7x=28\)

\(\Leftrightarrow x=28:7\)

\(\Leftrightarrow x=4\)

Vậy \(x=4\)

e) \(4^x=64\)

\(\Leftrightarrow4^x=4^3\)

\(\Leftrightarrow x=3\)

Vậy \(x=3\)

g) \(9^{x-1}=9\)

\(\Leftrightarrow9^{x-1}=9^1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=1+1\)

\(\Leftrightarrow x=2\)

Vậy \(x=2\)

2 tháng 2 2016

Hỏi đáp Toán

2 tháng 2 2016

Hỏi đáp Toán

3 tháng 5 2020

Cảm ơn ạ

28 tháng 4 2020

a, I(-4;3), R=\(\sqrt{17}\)

b, I(3;2), R=7

c, 16x2+16y2+16x-8y-11=0 <=> \(x^2+y^2+x-\frac{1}{2}y-\frac{11}{16}=0\)

\(\Rightarrow I\left(\frac{-1}{2};\frac{1}{4}\right),R=1\)

d, I(-4;-7), \(R=\sqrt{15}\)

e, 3x2 + 3y2 + 6x - 12y - 9 = 0<=> x2+y2+2x-4y-3=0

\(\Rightarrow I\left(-1;2\right),R=2\sqrt{2}\)

f, I(-5;-7), R=\(\sqrt{15}\)

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)