Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{99}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
Ta có : \(\frac{1}{2}< \frac{1}{1};\frac{1}{2^2}< \frac{1}{1\cdot2};.....;\frac{1}{2^{99}}< \frac{1}{98\cdot99}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}=1+1-\frac{1}{99}=2-\frac{1}{99}\)
Mk nghĩ đề có chút sai , mk làm đến đây là đc r , thông cảm nha bạn
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(2B-B=1+\frac{1}{2}+...+\frac{1}{2^{98}}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(B=1-\frac{1}{2^{99}}< 1\)
\(\frac{N}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{N}{2}=N-\frac{N}{2}=\frac{1}{2}-\frac{1}{2^{100}}\Rightarrow N=1-\frac{1}{2^{99}}<1\)
B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow\)3B = \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
Lấy 3B - B = \(\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
2B = \(1-\frac{1}{3^{99}}\)
B = \(\left(1-\frac{1}{3^{99}}\right):2\)
= \(\left(1-\frac{1}{3^{99}}\right).\frac{1}{2}\)
= \(1.\frac{1}{2}-\frac{1}{3^{99}}.\frac{1}{2}\)
= \(\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)
\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{100}}< 1\)