Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(C=x^3+3x^2+3x+10=\left(x+1\right)^3+9\)
Tại x = 99...9 (2004 chữ số 9) thì: x+1 = 100...0 (2004 chữ số 0) = 102004
Khi đó, C = (102004)3 + 9 = 106012 + 9.
b) \(B=\left(5x-11\right)^2-\left(10x-22\right)\left(5x-9\right)+\left(5x-9\right)^2=\)
\(=\left(5x-11\right)^2-2\cdot\left(5x-11\right)\left(5x-9\right)+\left(5x-9\right)^2=\left(5x-11-\left(5x-9\right)\right)^2=\left(-2\right)^2=4\)
Hay B = 4 với mọi x .
Vậy tại x = 20052006 thì B = 4.
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...
\(B=10+9^2+9^3+...+9^{2005}\)
\(\Rightarrow B=1+9+9^2+...+9^{2005}\)
\(\Rightarrow9B=9+9^2+9^3+...+9^{2006}\)
\(\Rightarrow9B-B=\left(9+9^2+9^3+...+9^{2006}\right)-\left(1+9+9^2+...+9^{2005}\right)\)
\(\Rightarrow8B=9^{2006}-1\)
\(\Rightarrow B=\frac{9^{2006}-1}{8}\)
Vậy \(B=\frac{9^{2006}-1}{8}\)
_Chúc bạn học tốt_