K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

mình đang cần gấp lắm ạ.Mong bạn tốt bụng,dễ thương,đẹp trai,xinh gái giúp đỡ mình ạ.Cảm ơn vì đã quan tâm

1 tháng 3 2022

-mình sửa đề luôn nhé

\(\Delta=9m^2-4\left(3m-2\right)=9m^2-12m+8=\left(3m-2\right)^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

Vì x1 là nghiệm pt trên nên 

\(A=3mx_1-3m+2+3mx_2-m+1=3m.3m-4m+3\)

\(=9m^2-4m+3=9m^2-\dfrac{2.3m.4}{6}+\dfrac{16}{36}-\dfrac{16}{36}+3\)

\(=\left(3m-\dfrac{4}{6}\right)^2+\dfrac{23}{9}\ge\dfrac{23}{9}\)Dấu ''='' xảy ra khi m = 2/9 

NV
12 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

a.

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)

\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)

Dấu = xảy ra khi \(m=\dfrac{3}{4}\)

b.

\(x_1^2+x_2^2=8m^3-8m^2\)

\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)

\(\Leftrightarrow8m^3-12m^2+6m-1=9\)

\(\Leftrightarrow\left(2m-1\right)^3=9\)

\(\Leftrightarrow2m-1=\sqrt[3]{9}\)

\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)

a: Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=4m^2-4m+1+15=(2m-1)^2+15>0

=>Phương trình luôn có 2 nghiệm pb

A=x1^2+x2^2

=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>=31/4

Dấu = xảy ra khi m=3/4

b: x1^2+x2^=8m^3-8m^2

=>4m^2-6m+10=8m^3-8m^2

=>8m^3-8m^2-4m^2+6m-10=0

=>8m^3-12m^2+6m-10=0

=>\(m\simeq1,54\)

4 tháng 3 2016

Ta có X1+ X22=(X1 + X2)2-2X1X2=S-2P=(-b/a)2-2(c/a)=(m+1)-2(2m-3)=m2+2m+1-4m+6=m2-2m+1+6=(m-1)2+6 >= 6 

Vậy X1+ X22 đạt GTNN khi m-1=0 <=>m=1

4 tháng 3 2016

cảm ơn bạn nha

4 tháng 8 2016
Ta có x1^2 + x2^2 = (x1 + x2) ^2 - 2x1x2 = 4(m-1)^2 - 2(m^2 -3m +4)= 4m^2 - 8m + 4 - 2m^2 + 6m - 8 = 2m^2 - 2m-4= [(√2)m^2 - (m2√2)/√2 +1/2]-9/2=(m√2 - 1/√2)^2 - 9/2>=-9/2 vậy giá trị nhỏ nhất là -9/2 với m=1/2 điều kiện để pt có 2 nghiệm bạn tự làm nha
6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)

a) Ta có: \(\Delta^'=\left(-m\right)^2-\left(-3m^2+4\right)=4m^2-4\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta^'>0\Leftrightarrow4m^2-4>0\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)

b) Theo Vi-ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=4-3m^2\end{matrix}\right.\)

\(\left|x_1-x_2\right|^2=\left|\right|\left(x_1-x_2\right)^2=x^2_1+x_2^2-2x_1\cdot x_2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=4m^2-4+3m^2=7m^2-4\ge4\Rightarrow\left|x_1-x_2\right|\ge2\)

Dấu bằng xảy ra \(\Leftrightarrow m=0\)

1 tháng 6 2020

Bạn ơi cái chỗ (4m-2)^2+4 ấy làm sao để ra ạ

1 tháng 6 2020

bạn có thể ns rõ chổ nào ko ạ ! có nhiều chổ như thế lắm !

VD : \(16m^2-16m+4+4=\left(4m\right)^2-2.4m.2+2^2+2=\left(4m-2\right)^2+4\)

Hay \(\left(4m-2\right)^2+4\ge0+4=4\)