K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

\(=\left(x^2+1\right)^2+3>0\forall x\in R\)

ta có : 

\(x^4\ge0\)

\(^{2x^2\ge0}\)

\(\Rightarrow x^4+2x^2\ge0\)

\(\Rightarrow x^4+2x^2+4\ge4\)

hay  \(x^4+2x^2+4>0\)

vậy...............

12 tháng 7 2015

a/

\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)

\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)

b/

Q(x) = 0 với mọi x, suy ra các điều sau:

\(\Rightarrow Q\left(0\right)=c=0\)\(Q\left(1\right)=a+b+c=a+b=0\)\(Q\left(-1\right)=a-b+c=a-b=0\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)

Vậy \(a=b=c=0\)

12 tháng 5 2017

thì giá trị biểu thức làm sao?

13 tháng 5 2017

nguyên

12 tháng 8 2019

Hỏi đáp Toán

12 tháng 8 2019

Hàm số \(f\left(x\right)=5x^2-2\)

a) => \(f\left(-0,5\right)=5.\left(-0,5\right)^2-2\)

\(f\left(-0,5\right)=1,25-2\)

\(f\left(-0,5\right)=-0,75.\)

=> \(f\left(-0,2\right)=5.\left(-0,2\right)^2-2\)

\(f\left(-0,2\right)=0,2-2\)

\(f\left(-0,2\right)=-1,8.\)

=> \(f\left(0,4\right)=5.\left(0,4\right)^2-2\)

\(f\left(0,4\right)=0,8-2\)

\(f\left(0,4\right)=-1,2.\)

=> \(f\left(1\right)=5.1^2-2\)

\(f\left(1\right)=5-2\)

\(f\left(1\right)=3.\)

=> \(f\left(25\right)=5.25^2-2\)

\(f\left(25\right)=3125-2\)

\(f\left(25\right)=3123.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

22 tháng 4 2019

a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!

Ta có: \(A\left(2\right)=4a+2b+c\) 

\(A\left(-1\right)=a-b+c\)

Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)

Suy ra \(A\left(2\right)=-A\left(-1\right)\)

Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)

b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)

\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)

Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)

Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)

\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)

\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)

Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)

Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)

Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)

Đúng ko ta?

19 tháng 8 2015

\(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)

mà x<y=>a<b=> \(\frac{a+a}{2m}<\frac{a+b}{2m}\)

=> x<z

\(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}\)

tương tự=> z<y

Vậy x<x<y

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.

30 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

Ta có : \(f\left(-2\right)=4a-2b+c\)

          \(f\left(3\right)=9a+3b+c\)

\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                       \(=13a+b+c\)

                                       \(=0\)

\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)

\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)

\(\Rightarrow\) \(đpcm\)

Study well ! >_<

30 tháng 3 2019

tốt lắm bạn