K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

a) x2 + y2 + 4x - 10y + 29 = 0

<=> (x2 + 4x + 4) + (y2 - 10y + 25) = 0

<=> (x+2)2 + (y-5)2 = 0

Mà: (x+2)2 ≥ 0 với mọi x

(y-5)2 ≥ 0 với mọi y

=>\(\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)(T/m)

Vậy x = -2 và y = 5.

b) C = 5x2 - 20x + 15

= 5(x2 - 4x + 3)

= 5(x2 - x - 3x + 3)

= 5[x(x-1) - 3(x-1)]

= 5(x-1)(x-3)

c) x2 + y2 + 2x - 6y + 10 = 0

<=> (x2 + 2x + 1) + (y2 - 6y + 9) = 0

<=> (x+1)2 + (y-3)2 = 0

Mà: (x+1)2 ≥ 0 với mọi x

(y-3)2 ≥ 0 với mọi y

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)(T/m)

Vậy x = -1 và y = 3

d) A = 3x2 - 12x + 15

= 3(x2 - 4x + 5)

= 3(x2 - 5x + x - 5)

= 3[x(x-5) + (x-5)]

= 3(x-5)(x+1)

21 tháng 8 2019

Đề bài bn ghi thek thì ai làm nổi cho bn :V ?

21 tháng 8 2019

mng giúp em với tối em nộp bài rồi a

19 tháng 7 2021

cức + điên= lan ngọc cức điên

25 tháng 12 2020

ko có biết

13 tháng 7 2021

bài vách ngọc ngà và bài cà phê ko đường

1 tháng 6 2018

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

1 tháng 6 2018

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

1 tháng 6 2018

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)