K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

b)(x+2)(x^2-2x+4)-x(x^2-2)=15

=x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15

=2x+8=15

2x=15-8

2x=7

x=7/2

vậy x = 7/2

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)

\(2x+8=15\)

\(2x=7\)

\(x=\frac{7}{2}\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(\Leftrightarrow9x+7=17\)

\(\Leftrightarrow9x=10\)

\(\Leftrightarrow x=\frac{10}{9}\)

7 tháng 7 2015

ban tu nhan ra rui tach nha toi chi cho ban ket qua thui

7 tháng 7 2015

a.  x=4,49

b.  ko có giá trị của x

c.   x=-0,44

d.  x=-2+can3 ; x=-2-can3

 

21 tháng 10 2017

a) \(49-\left(3x-1\right)^2=0\)

\(\Leftrightarrow7^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(7-3x+1\right)\left(7+3x-1\right)=0\)

\(\Leftrightarrow\left(8-3x\right)\left(6+3x\right)=0\)

\(\hept{\begin{cases}8-3x=0\\6+3x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)

Vậy \(x=\frac{8}{3};x=-2\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow\left(x-1\right)^3-\left(x^3+2^3\right)-3\left(1-x^2\right)=0\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)

\(\Leftrightarrow3x-12=0\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

15 tháng 8 2016

cảm ơn bn nhiều!

24 tháng 8 2020

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16

x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0

9x - 9 = 0

9x = 9

x = 1

Vậy x ∈ {1}

b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16

x3 + 8 - x3 + 2x - 16 = 0

2x - 8 = 0

2x = 8

x = 4

Vậy x ∈ {4}

c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17

x3 - 25x - x3 - 8 - 17 = 0

-25x - 25 = 0

-25x = 25

x = -1

Vậy x ∈ {1}

d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15

x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0

45x - 6 = 0

45x = 6

x = \(\frac{2}{15}\)

Vậy x ∈ {\(\frac{2}{15}\)}

4 tháng 8 2018

Bài 1:

a) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(\Rightarrow x^3-3x^2+3x-1+2^3-x^3+3x^2+6x=17\)

\(\Rightarrow9x+7=17\)

\(\Rightarrow9x=17-7=10\)

\(\Rightarrow x=\dfrac{10}{9}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Rightarrow x^3+2^3-x^3+2x=15\)

\(\Rightarrow8+2x=15\)

\(\Rightarrow2x=15-8=7\)

\(\Rightarrow x=\dfrac{7}{2}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Rightarrow x^3-3x^2.3+3x.3^2-3^3-x^3+3^3+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\)

\(\Rightarrow45x=6\)

\(\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

d) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Rightarrow x\left(x^2-5^2\right)-x^3-2^3=3\)

\(\Rightarrow x^3-25x-x^3-8=3\)

\(\Rightarrow-25x-8=3\)

\(\Rightarrow-25x=3+8=11\)

\(\Rightarrow x=-\dfrac{11}{25}\)

Bài 2:

a) Ta có:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\)

\(B=2^{16}-1\)

Vì 216 - 1 < 216

=> B < A

b) Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{128}-1\right)\)

Vì 1/2( 3128 - 1) < 3128 - 1

=> A < B

3 tháng 9 2016

trời đất, học hằng đẳng thức chưa, chưa hc thì thôi, học rồi thì áp dụng vs bài này như ăn cháo thôi chứ có j đâu phải hỏi

10 tháng 7 2018

\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)

\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)

\(12x^2-48-12x^2-36x-27\) \(=52\)

\(-36x-75=52\)

\(-36x=127\)

\(x=\frac{-127}{36}\)

\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)

\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)

\(4x^2+4x-1-4x^2+4+2x=5\)

\(6x+3=5\)

\(6x=2\)

\(x=3\)

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)

\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)

\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)

\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)

\(x^3-2-x^3-3x^2+9x+27=15\)

\(-3x^2+9x+25=15\)

\(-3x^2+9x+10=0\)

\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)

\(x=\frac{9+\sqrt{201}}{6}\)

các câu còn lại tương tự