Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^0-40^0}{2}=70^0\)
\(\widehat{BAM}=\widehat{CAM}=\dfrac{40^0}{2}=20^0\)
\(\widehat{AMB}=\widehat{AMC}=90^0\)
A B C H D
Giải:
a) Ta có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\) ( tổng 3 góc của \(\Delta=180^o\) )
\(\Rightarrow\widehat{BAC}+70^o+30^o=180^o\)
\(\Rightarrow\widehat{BAC}=80^o\)
b) Mà AD là tia phân giác của \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{1}{2}\widehat{A}=40^o\)
Ta có: \(\widehat{C}+\widehat{ADC}=\widehat{ADH}\) ( góc ngoài \(\Delta ADC\) )
\(\Rightarrow30^o+40^o=\widehat{ADH}\)
\(\Rightarrow\widehat{ADH}=70^o\)
c) Xét \(\Delta AHD\) có:
\(\widehat{HAD}+\widehat{AHD}+\widehat{ADH}=180^o\)
\(\Rightarrow\widehat{HAD}+90^o+70^o=180^o\)
\(\Rightarrow\widehat{HAD}=20^o\)
Vậy a) \(\widehat{BAC}=80^o\)
b) \(\widehat{ADH}=70^o\)
c) \(\widehat{HAD}=20^o\)
a,Ta có : BAC = A
Mà A =1800 _ B -C
=>A =1800 -700 -300
=>A =800
b, Ta có : A1 là tia phân giác của A
=>A1 = \(\frac{1}{2}\)A +400
Mà ADH là góc ngoài của đỉnh D của tam giác ADC nên
ADH = C+A1 =300+ 400 =700
c, Theo câu b, ta có :
ADH = 700 => HAD = 900 -700 =200
M P K N H I
kẻ NI và IK
I thuộc MI
MI là phân giác của góc PMN (gt)
IH _|_ MN (gt)
IK _|_ MP (gt)
=> IH = IK (định lí) (1)
có I thuộc đường trung trực của NP (gt)
=> IN = IP (định lí)
xét tam giác IHN và tam giác IKP có : góc IHN = góc IKP = 90 và (1)
=> tam giác IHN = tam giác IKP (ch-cgv)
=> HN = KP (định nghĩa)