Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán 1
Ta có thể viết:
A(x) = (3 - 4x + x^2)^2004 * (3 + 4x + x^2)^2005 = (3^2004 - 2 * 3^2004 * 4x + 4^2004 * x^2 + 2 * 3^2004 * 4x^2 - 2 * 3 * 4^2004 * x^3 + 4^4009 * x^4) = 3^4008 - 2 * 3^2005 * 4x - 2 * 3^2004 * 4x^2 + 4^4009 * x^4
Tổng các hệ số của đa thức này là:
1 + (-2 * 2005) + (-2 * 2004) + 1 = -6014Vậy đáp án là -6014.
Bài toán 2
Ta có thể viết:
a = 111...1 (2n chữ số 1) b = 111...1 (n + 1 chữ số 1) c = 666...6 (n chữ số 6)Vậy:
a + b + c + 8 = 111...1 (2n) + 111...1 (n + 1) + 666...6 (n) + 8Ta có thể chia cả hai vế cho 8 được:
(a + b + c + 8) / 8 = 111...1 (2n) / 8 + 111...1 (n + 1) / 8 + 666...6 (n) / 8 + 1Ta có thể thấy rằng:
111...1 (2n) / 8 = (111...1 (n))^2 111...1 (n + 1) / 8 = (111...1 (n))^2 + 1 666...6 (n) / 8 = (111...1 (n))^2 - 1Vậy:
(a + b + c + 8) / 8 = (111...1 (n))^2 + (111...1 (n))^2 + 1 + (111...1 (n))^2 - 1 + 1 = 3 * (111...1 (n))^2 + 1Ta có thể thấy rằng:
(111...1 (n))^2 + 1 = (111...1 (n) + 1)(111...1 (n) - 1)Vậy:
(a + b + c + 8) / 8 = 3 * (111...1 (n) + 1)(111...1 (n) - 1) + 1 = 3 * (222...2 (n + 1))Từ đó, ta có:
a + b + c + 8 = 666...6 (2n + 2)Vậy, a + b + c + 8 là số chính phương.
Bài toán 3
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 1, ta có:
ab + 4 = 44 là số chính phương.
Bước đệm
Giả sử rằng với mọi số tự nhiên a < n, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bước kết luận
Xét số tự nhiên a = n.
Theo giả thuyết, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Vậy, (n + 1)b + 4 = (n + 1)(ab + 4) + 3 là số chính phương, vì ab +
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
a)3^2+2^2=5^2 => n=2
b) 3^2+2^2=5^2 => n=2
nó là duy nhất
c/m duy nhất: giờ thi trác nhiệm thôi khỏi cần chưng minh