Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2x+3\right|=x+2\)
\(TH1:2x+3=x+2\)
\(\Rightarrow2x-x=2-3\)
\(x=-1\)
\(TH2:2x+3=-\left(x+2\right)\)
\(2x+3=-x-2\)
\(2x+x=-2-3\)
\(3x=-5\)
\(x=\frac{-5}{3}\)
KL: x= -1; x= -5/3
b) bn tham khảo câu này nha
gõ link : http://olm.vn/hoi-dap/question/650540.html
CHÚC BN HỌC TỐT!!!
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=1\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2006\right|=0\\\left|2007-x\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2006\\x=2007\end{cases}}\)
Vậy MinA=1<=>x=2006 hoặc x=2007
Ta có: |2007-x|=|x-2007|
|x-2006|+|x-2007| > |x-2006-(x-2007)|
=> A > 1
=> GTNN cua A la 1
Đẳng thức xảy ra khi (x-2006)(x-2007) > 0
+) Nếu x < 2006 thì: A = – x + 2006 + 2007 – x = – 2x + 4013
Khi đó: – x > -2006 => – 2x + 4013 > – 4012 + 4013 = 1 => A > 1
+) Nếu 2006 <= x <= 2007 thì: A = x – 2006 + 2007 – x = 1
+) Nếu x > 2007 thì A = x – 2006 – 2007 + x = 2x – 4013
Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1.
Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 <= x <= 2007.
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1
Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)
\(=\left|2006-x\right|+\left|x-2007\right|\)
Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)
Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)
Vậy GTNN A=1 khi \(2006\le x\le2007\)
Ta có :
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)
\(\Rightarrow A\ge1\)
\(\Rightarrow A_{min}=1\)
\(\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\)
Ta có bảng xét dấu :
x x-2006 ( x - 2006 )( 2007 - x ) 2006 2007 0 0 2007-x 0 _ _ + + + + 0 0 + _ _
\(\Rightarrow2006\le x\le2007\)
a. B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006;x=2007
b) C= y2 +|x-16|-9
Vì y2\(\ge\)0
|x-16|\(\ge\)0
Suy ra: y2 +|x-16|-9\(\ge\)-9
Dấu = xảy ra khi x-16=0;x=16
y2=0;y=0
Vậy Max C=-9 khi x=16;y=0