K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

a) n + 5 chia hết cho n - 2

=> ( n - 2 ) + 7 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

n-2-7-117
n-51310

Vậy n = { -5 ; 1 ; 3 ; 10 )

b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow35n+50-35n-49⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

=> ƯCLN(7n + 10 ; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm ) 

12 tháng 8 2020

Bài làm:

a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)

Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)

b) Gọi \(\left(7n+10;5n+7\right)=d\)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)

\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)

\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)

\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\pm1\)

=> 7n+10 và 5n+7 nguyên tố cùng nhau

=> đpcm

3 tháng 1 2021

                                                          Bài giải

a, Ta có : \(8n+8=4\left(n+2\right)\text{ }⋮\text{ }4\text{ với }\forall n\in N\)

\(\Rightarrow\)Không có số tự nhiên n nào thỏa mãn đề bài

b, Gọi \(ƯCLN\left(5n+7\text{ ; }7n+10\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\text{ }7n+10\text{ }⋮\text{ }d\\5n+7\text{ }⋮\text{ }d\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}\text{ }5\left(7n+10\right)\text{ }⋮\text{ }d\text{ }\\7\left(5n+7\right)\text{ }⋮\text{ }d\end{cases}}\Rightarrow\hept{\begin{cases}\text{ }35n+50\text{ }⋮\text{ }d\\35n+49\text{ }\text{ }\text{ }⋮\text{ }d\end{cases}}\)

\(\Rightarrow\text{ }\left(35n+50\right)-\left(35n+49\right)\text{ }⋮\text{ }d\)

\(\Rightarrow\text{ }1\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }d=1\)

\(\Rightarrow\text{ }5n+7\text{ và }7n+10\) là 2 số nguyên tố cùng nhau

25 tháng 12 2022

A) a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2

 

a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3

 

a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5

 

a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7

 

Suy ra a+11 cùng chia hết cho 2; 3; 5; 7

 

a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất

 

Do đó, a+11=BCNN (2;3;5;7)

 

Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau

 

Do vậy, a+11=2.3.5.7=210

 

Vậy a=199

B)Gọi UCLN của 7n+10 và 5n+7 là d

7n+10 chia hết cho d => 5(7n+10) chia hết cho d

                                 hay 35n+50 chia hết cho d

5n+7 chia hết cho d=> 7(5n+7) chia hết cho d

                                 hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d 

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d

1 chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

25 tháng 12 2022

Vì a chia cho 2 dư 1 nên a là số lẻ.

Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.

Do đó a phải có tận cùng là 1.

- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).

- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).

Vì 171 : 7 = 24 dư 3 nên a = 171.

Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.

23 tháng 10 2017

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

Gọi ƯCLN(7n+10;5n+7)=a

Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a

=> 35n+50 chia hết cho a (1)

            5n+7 chia hết cho a => 7(5n+7) chia hết cho a

=> 35n + 49 chia hết cho a (2)

Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a

=> 1 chia hết cho a

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

tick ủng hộ nha

 

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

27 tháng 9 2015

Gọi WCLN(7n+10; 5n+7) là d. Ta có:

7n+10 chia hết cho d => 35n+50 chia hết co d

5n+7 chia hết cho d => 35n+49 chia hết cho d

=> 35n+50-(35n+49) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> WCLN(7n+10; 5n+7) = 1

=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)