Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P\left(-1\right)=-m-3=2\)
\(m=-3-2\)
\(m=-5\)
Bài 2:
Q(x) có nghiệm là -1⇔\(Q\left(-1\right)=0\)
⇒\(-2-m+7+3=0\)
\(m=7+3-2=8\)
Bài 3:
Q(x) có nghiệm là -1⇔\(Q\left(-1\right)=0\)
⇒\(m-2m-3=0\)
\(-m-3=0\)
\(m=-3\)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
Ta có : 3x^2+5x+2=0 3x^2+2x+3x+2=0 (3x^2+2x)+(3x+2)=0 x(3x+2)+(3x+2)=0 (3x+2).(x+1)=0 =>3x+2=0=>x=-2/3 x+1=0=>x=-1
a, Đặt 3x^2 + 5x + 2 = 0
=>3x^2 + 2x + 3x + 2 =0
=>(3x^2 +2x) + (3x+2)=0
=> x(3x+2) + (3x+2) = 0
( 3x+2).(x+1)=0
<=> 3x+2=0 hoặc x+1=0
<=>3x =-2 hoặc x= -1
<=>x=-2/3 hoặc x= -1
Vậy nghiệm đa thức đã cho là x= -2/3 hoặc x= -1
b, Ta có : Q(1)=0
<=> m(1)^2 + 2m(1) - 3 =0
<=> m + 2m = 3
<=>m(1+2) = 3
<=>m = 1
A, \(M\left(-1\right)=0\)
\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)
\(-m-3=0\)
\(m=-3\).
B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)
\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).
A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)
\(M\left(-1\right)=m-2m-3\)
Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)
\(\Rightarrow M\left(-1\right)=0\)
\(\Rightarrow m-2m-3=0\)
\(-m-3=0\)
\(\Rightarrow m=-3\)
Vậy \(m=-3\).
B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)
\(\Rightarrow x\left(2x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1>0\)
\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)
Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).