Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có S = 36cm2. Lấy H thuộc cạnh AB sao cho AH = 1/3x AB. Lấy I thuộc cạnh AC sao cho AI = 1/3x AC. Tính S IHC
Làm ơn giải theo cách lớp 6 giùm. Ví dụ:
Xét tam giác............
Có chiều cao hạ từ đỉnh..........
=>.............
Giải:
a) \(\dfrac{1}{2}< x< \dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{12}{24}< x< \dfrac{21}{24}\)
\(\Leftrightarrow x\in\left\{\dfrac{13}{24};\dfrac{14}{24};\dfrac{15}{24};\dfrac{16}{24};\dfrac{17}{24};\dfrac{18}{24};\dfrac{19}{24};\dfrac{20}{24}\right\}\)
Mà x là số hữu tỉ có mẫu là 24
\(\Leftrightarrow x=\left\{\dfrac{13}{24};\dfrac{17}{24};\dfrac{19}{24}\right\}\)
Vậy ...
b) \(\dfrac{3}{5}< x< \dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{12}{20}< x< \dfrac{12}{15}\)
\(\Leftrightarrow x\in\left\{\dfrac{12}{19};\dfrac{12}{18};\dfrac{12}{17};\dfrac{12}{16}\right\}\)
Mà x là số hữu tỉ có tử là 12
\(\Leftrightarrow x=\left\{\dfrac{12}{19};\dfrac{12}{17}\right\}\)
Vậy ...
#)Giải :
Ta có : \(\frac{9}{13}< \frac{7}{x}< \frac{9}{11}\)
\(\Leftrightarrow\frac{63}{91}< \frac{63}{9x}< \frac{63}{77}\)
\(\Leftrightarrow91< 9x< 77\)
\(\Leftrightarrow x\in\left\{9;10\right\}\)
Vậy các phân số cần tìm là \(\frac{7}{9};\frac{7}{10}\)
Bài 4:
Gọi phân số phải tìm là \(\frac{a}{10}\) (\(a\ne0\))
Theo bài ra ta có:
\(-\frac{7}{13}< \frac{a}{10}< -\frac{4}{13}\)
\(\Rightarrow-\frac{70}{130}< \frac{-13a}{130}< -\frac{40}{130}\)
\(-70< -13a< -40\) (1)
Do -13a chia hết cho 13 nên \(-13a\in B\left(13\right)\) (2)
Từ (1) và (2) \(\Rightarrow\) \(-13a\in\left\{52;65\right\}\)
\(\Rightarrow a\in\left\{-4;-5\right\}\)
Vậy phân số phải tìm \(-\frac{4}{10}\)và \(-\frac{5}{10}\)
Bài 5:
a) Muốn x là 1 số hữu tỉ thì \(b-15\ne0\) hay \(b\ne15\)
b) Muốn x là 1 số hữu tỉ âm thì b - 15 < 0, tức là \(b< 15\)
c) Muốn x là 1 số hữu tỉ dương b - 15 > 0, tức là b > 15
d) Muốn x = -1 thì b - 15 phải là số đối của 12, tức là -12
\(\Rightarrow b-15=-12\Rightarrow b=3\)
e) Muốn x > 1 thì tức là tử phải lớn hơn mẫu và mẫu dương
\(\Rightarrow0< b-15< 12\Rightarrow15< b< 27\)
f) Muốn 0 < x < 1\(\Rightarrow\begin{cases}b-15>0\\b-15>12\Rightarrow b>27\end{cases}\)
........................................................