Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử $a\leq b\leq c\Rightarrow 2\leq c\leq 4$
$P=a^2+b^2+ab+c(a+b+c)=(a+b)^2-ab+6c\leq (6-c)^2+6c=c^2-6c+36=(c-3)^2+27$
Vì $2\leq c\leq 4$ nên $-1\leq c-3\leq 1\Rightarrow (c-3)^2\leq 1$
Vậy MaxP=28 khi a,b,c là hoán vị của 0,2,4
Từ giả thiết \(a+b+c=6\) ta có:
\(\left(a+b+c\right)^2=36=a^2+b^2+c^2+2\left(ab+ac+bc\right)=P+ab+ac+bc\)
Hay \(P=36-ab-bc-ca\).
Vậy GTLN của P tương đương với GTNN của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a\) là số lớn nhất trong \(a,b,c\)
Thì \(a+b+c=6\le3a\), do đó \(4\ge a\ge2\)
Lại có: \(ab+bc+ca\ge ab+ca=a\left(b+c\right)=6\left(6-a\right)\ge8\) với \(4 \ge a \ge 2\)
Do đó GTNN của \(ab+bc+ca=8\), khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
Vậy GTLN của P là \(36-8=28\) khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
\(\left\{\begin{matrix}a+b+c=6\left(1\right)\\0\le a,b,c\le4\left(2\right)\end{matrix}\right.\)
Từ(1)=> \(\left\{\begin{matrix}b+c=\left(6-a\right)\\b^2+c^2+bc=\left(6-a\right)^2-bc\end{matrix}\right.\)
\(P=a^2+\left(b^2+c^2+bc\right)+a\left(b+c\right)=a^2+\left[\left(6-a\right)^2-bc\right]+a\left(6-a\right)\)
\(P=\left(a^2-12a+36\right)-bc=\left(a-6\right)^2-bc\)
Từ (2)=> \(bc\ge0\) \(\Rightarrow P\le\left(a-6\right)^2\)
đạt được khi: \(b.c=0\Rightarrow\left[\begin{matrix}b=0\\c=0\end{matrix}\right.\) (3)
từ (1)&(3) \(\Rightarrow2\le a\le4\) (4)
P lớn nhất => !a-6! lớn nhất thủa mãn (4) => a=2 Từ (1)&(3)=>\(\left[\begin{matrix}b=4\\c=4\end{matrix}\right.\)
Kết luận:
Để P(a,b,c) đạt Max trong 3 số phải có 1 số =0 (cận bé của (2) ; Một số =4 (cận lớn của (2); một số thỏa mãn điều kiện (1)
Vậy: \(P_{max}\left(a,b,c\right)=P\left(4,2,0\right)=4^2+2^2+0^2+2.4+0+0=28\)
giả sử tất cả các phương trình sau đều vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}b^2-ac< 0\\c^2-ba< 0\\a^2-cb< 0\end{matrix}\right.\) cộng quế theo quế ta có : \(a^2+b^2+c^2-ab-bc-ca< 0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-2ac-2bc-2ca\right)< 0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\left(vôlí\right)\)
vậy điều giả sử lúc đầu là sai \(\Rightarrow\left(đpcm\right)\)
Ta có: a +b +c = 0:
=> (a + b + c)2 = 0
=> a² + b² + c² + 2(ab + bc + ca) = 0
=> a² + b² + c² = -2(ab + bc + ca) (1)
Mặt khác:
a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) (cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²) ( do (1) )
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> ĐPCM.
xl, mik mới chứng minh đc bằng và cũng có sai sót trong bài làm
Đặt \(\frac{a}{c}=\frac{c}{b}=k\) thì a = ck và c = bk
Ta có :
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-\left(ck\right)^2}{\left(ck\right)^2+\left(bk\right)^2}=\frac{b^2-c^2k^2}{c^2k^2+b^2k^2}=\frac{b^2-c^2k^2}{k^2.\left(c^2+b^2\right)}\)
và \(\frac{b-a}{b}=\frac{b-\left(ck\right)^2}{b}=\frac{b-c^2k^2}{b}\)
Hai phân số này có cùng tử số nhưng mẫu số không bằng nhau (do riêng b2 > b nên k2.(c2 + b2) > b) do đó hai phân số không thể bằng nhau. Bạn xem lại đề.
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
\(A=\left(2x\right)^2-2.2x.5+5^2-4x.x+4x.6\)
\(=4x^2-20x+25-4x^2+24x=4x+25\)
\(B=\left(7x-3y\right)^2-\left(7x-3y\right)\left(7x+3y\right)\)
\(=\left(7x-3y\right)\left(7x-3y-7x-3y\right)\)
\(=\left(7x-3y\right)\left(-6y\right)=18y^2-42xy\)
\(C=\left(3-2x\right)^2+\left(3+2x\right)^2\)
\(=9-2.3.2x+4x^2+9+2.3.2x+4x^2\)
\(=18+8x^2\)
\(D=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+x\right)\left(y-z\right)\)
\(=\left(x-y+z+z-y\right)^2=x^2\)