Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VP=\left(a+b\right)\left(a^{2n}-a^{2n-1}.b+a^{2n-2}.b^2+...+a^{2n}.b^{2n-2}-a.b^{2n-1}+b^{2n}\right)\)
\(=a^{2n+1}-a^{2n}.b+a^{2n-1}b^2+...+a^2.b^{2n-1}+a.b^{2n}+a^{2n}.b-a^{2n-1}.b^2+....-a.b^{2n}+b^{2n+1}\)
\(=a^{2n+1}+b^{2n+1}=VT\)
Vậy.....................(đpcm)
Chúc bạn học tốt!!!
Ta có:VT=\(\left(a+b\right)\left(a^{2n}-a^{2n-1}b+...-b^{2n}\right)\)
=\(a^{2n+1}-a^{2n}b+...+a^{2n}b+b^{2n}\)(Triệt tiêu hết )
=\(a^{2n+1}+b^{2n+1}\)(đpcm)
Bài 2:
a: \(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=2n\left(2n-2\right)\left(2n-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>4n(n-1) chia hết cho 8
=>4n(n-1)(2n-1) chia hết cho 8
b: \(n^3-19n=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>n(n-1)(n+1)-18n chia hết cho 6
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)
a) điều kiện \(n\in Z\)
\(n^2+2n+4=n^2+2n+1+3=\left(n+1\right)^2+3\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2+3\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2+3=1\\\left(n+1\right)^2+3=-1\\\left(n+1\right)^2+3=11\\\left(n+1\right)^2+3=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=-2\left(vôlí\right)\\\left(n+1\right)^2=-4\left(vôlí\right)\\\left(n+1\right)^2=8\\\left(n+1\right)^2=-14\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=\sqrt{8}\\n+1=-\sqrt{8}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=\sqrt{8}-1\left(loại\right)\\n=-\sqrt{8}-1\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào thỏa mãn
b) điều kiện \(x\in Z\)
\(n^2+2n-4=n^2+2n+1-5=\left(n+1\right)^2-5\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2-5\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2-5=1\\\left(n+1\right)^2-5=-1\\\left(n+1\right)^2-5=11\\\left(n+1\right)^2-5=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=6\\\left(n+1\right)^2=4\\\left(n+1\right)^2=16\\\left(n+1\right)^2=-6\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=\sqrt{6}\\n+1=-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=4\\n+1=-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=\sqrt{6}-1\left(loại\right)\\n=-\sqrt{6}-1\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=1\left(tmđk\right)\\n=-3\left(tmđk\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=3\left(tmđk\right)\\n=-5\left(tmđk\right)\end{matrix}\right.\end{matrix}\right.\)
vậy \(n=1;n=-3;n=3;n=-5\)
Các bạn chú ý dấu { và [. Các dấu này khác nhau và việc dùng sai chúng dẫn tới lời giải của bài toán sai hoàn toàn.
- Dấu { có nghĩa là " và " hay " đồng thời xảy ra" thường chỉ dùng trong tìm điều kiện xác định hoặc những cái nào cần nhiều hơn 2 điều kiện.
- Dấu [ có nghĩa là hoặc : nghĩa là cái này xảy ra hoặc cái kia xảy ra, không nhất thiết cả hai cái cùng xảy ra.
Ví dụ: \(\left(n+1\right)^2\) là ước của 5. Như vậy có 4 trường hợp độc lập xảy ra và việc tồn tại của trường hợp này độc lập so với trường hợp khác nên ta dùng dấu [ để chia các trường hợp. Nếu dùng dấu { - có nghĩa là mọi điều kiện phải thỏa mãn - điều này sai về lô-gic khi \(\left(n+1\right)^2\) không thể vừa bằng 1 và vừa bằng 5 được.
Các bạn chú ý các lỗi sai về lô-gic sẽ bị trừ điểm rất nặng trong bài thi.
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)