K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Gọi phương trình đã cho là f(x) 

Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)

f(0) = a0 = - t.Q(x) (1)

Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)

Từ (1) ta có a0 là số lẻ nên t phải là số lẻ

Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + alà tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ

Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)

Vậy f(x) không có nghiệm nguyên

3 tháng 2 2016

Bạn ghi đề nhớ để dấu cho đúng nhé.

\(1.\) Cho  \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)  \(\left(1\right)\)

\(CMR:\)  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                                     \(----------------------\)

Ta có:

Từ  \(\left(1\right)\)  \(\Rightarrow\)  \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)  

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

              \(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)  \(\left(đpcm\right)\)

 

26 tháng 7 2018

Giúp mình với mình cần gấp

31 tháng 7 2018

Giúp mình câu a thôi mình giải đc câu b rồi

(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

=a3+b3+c3+3(a+b)(a+c)(b+c)

25 tháng 6 2019

#)Giải :

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b+c\right)^3\)

\(\Rightarrowđpcm\)

5 tháng 4 2018

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)