Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)
\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)
Vậy A < 5
\(\sqrt{12}<\sqrt{12,25}=3,5\)
\(\sqrt{20}<\sqrt{20,25}=4,5\)
\(\sqrt{30}<\sqrt{30,25}=5,5\)
\(\sqrt{42}<\sqrt{42,25}=6,5\)
Suy ra:\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)<3,5+4,5+5,5+6,5=20
Vậy biểu thức <20
a)\(\sqrt{0,09}\)+2.\(\sqrt{0,25}\)=0,3+2.0,5
=0,3+1
=1,3
b)0,5.\(\sqrt{100}\)-\(\sqrt{\frac{4}{25}}\)=0,5.10-0,4
=5-0,4
=4,6
c)(\(\sqrt{1\frac{9}{16}}\) -\(\sqrt{\frac{9}{16}}\)):5=(1,25-0,75):5
=0,5:5
=0,1
d)3.\(\sqrt{1\frac{17}{64}}\) -2.\(\sqrt{0,0625}\)=1,125-2.0,25
=1,125-0,5
=0,625