Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
b) \(\frac{x}{2}\)= \(\frac{y}{3}\) ; \(\frac{y}{5}\)= \(\frac{z}{7}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}\)=\(\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Vậy ...
câu dưới tương tự nha bn
hoặc bn vào các câu hỏi tương tự ấy có nhiều bài dạng như vầy lắm
Câu 1:
\(3\left(x-1\right)=2\left(y-2\right)\Leftrightarrow3x-3=2y-4\Leftrightarrow3x=2y-1\)
\(4\left(y-2\right)=3\left(z-3\right)\Leftrightarrow4y-8=3z-9\Leftrightarrow4y=3z-1\)
Lại có:
\(3x=2y-1\Leftrightarrow6x=4y-2=3z-1-2=3z-3\)
\(\Rightarrow6x=4y-2=3z-3\)
\(\Rightarrow6x=3z-3\Leftrightarrow2x=z-1\)
\(\Rightarrow2x+3y-z=z-1+3y-z=3y-1=50\Leftrightarrow3y=51\Leftrightarrow y=17\)\(\Rightarrow\left\{{}\begin{matrix}x=11\\z=23\end{matrix}\right.\)
Câu 3:
\(\frac{a}{b}=\frac{8}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{5}\Leftrightarrow\frac{1}{2}.\frac{a}{8}=\frac{1}{2}.\frac{b}{5}\Leftrightarrow\frac{a}{16}=\frac{b}{10}\) (1)
\(\frac{b}{c}=\frac{2}{7}\Leftrightarrow\frac{b}{2}=\frac{c}{7}\Leftrightarrow\frac{1}{5}.\frac{b}{2}=\frac{1}{5}.\frac{c}{7}\Leftrightarrow\frac{b}{10}=\frac{c}{35}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{16}=\frac{b}{10}=\frac{c}{35}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=16k\\b=10k\\c=35k\end{matrix}\right.\)
\(\Rightarrow a+b+c=16k+10k+35k=61k=61\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=16k=16\\b=10k=10\\c=35k=35\end{matrix}\right.\)
\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)
=> x=1 ; x=0 ; x=2
Vậy..
Bài 1 :
b) \(\left|x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
Vậy x thuộc {-2; 8}
c) \(\left|2x+1\right|=x-8\)
\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)
Vậy x thuộc {-9; 7/3}
Câu c) tớ không chắc, thông cảm.
=))
\(.a.\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-7\right)^{x+1}=0\\\left[1-\left(x-7\right)^{10}\right]=0\end{matrix}\right.\)
+ Nếu \(\left(x-7\right)^{x+1}=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=0+7\)
\(\Rightarrow x=7\)
+ Nếu \(1-\left(x-7\right)^{10}=0\)
\(\Rightarrow\left(x-7\right)^{10}=1\)
\(\Rightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)
\(\Rightarrow\left[\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=1+7\\x=-1+7\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=8\\x=6\end{matrix}\right.\)
Vậy : \(x\in\left\{6;7;8\right\}\)
a: =>\(\left(x+1\right)^{x+7}-\left(x+1\right)^{x+5}=0\)
=>x(x+1)(x+2)=0
hay \(x\in\left\{0;-1;-2\right\}\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{\dfrac{5}{2}}=\dfrac{3x-5y+6z}{3\cdot3-5\cdot7+6\cdot\dfrac{5}{2}}=\dfrac{21}{-11}=\dfrac{-21}{11}\)
Do đó: x=-63/11; y=-147/11; z=-105/22
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{12}=\dfrac{x+y+z}{15+20+12}=\dfrac{\dfrac{-7}{2}}{47}=-\dfrac{7}{94}\)
Do đó: x=-105/94; y=-140/94=-70/47; z=-84/94=-42/47