Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\left[\frac{\left(x+1\right)\left(x+2\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right]:\frac{2\left(1-2x\right)}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\frac{\left(x+1\right)\left(x+2\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{2-8x^2}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{1+2x-3x-1+x^2}{3x}\)
\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b)\(\text{Với }x\ne0,x\ne-1,x\ne\frac{1}{2}\text{ ta có:}\)
\(\text{Để A< 0\Leftrightarrow}\frac{x-1}{3}< 0\Rightarrow x-1< 0\Leftrightarrow x< 1\)
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)
ĐKXĐ: \(x\ne0;x\ne\pm2\)
a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)
b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)
Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)
c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy x=3/2 thì A=2
d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy với x>2 thì A<0
e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}
Ta có: x-2=1 => x=3 (t/m)
x-2=-1 => x=1 (t/m)
Vậy x thuộc {3;1} thì A thuộc Z
a) \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)
\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)
\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)
Vậy \(A=\frac{1}{2-x}.\)
b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)
Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...
c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...
d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...
e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)
Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)
Vậy x=1 hay x=3 thì A nguyên.
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)
Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
Để A nhận giá trị nguyên thì x-3 chia hết chi x+1
=> (x+1)-4 chia hết chi x+1
=> 4 chia hết cho x+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
ĐCĐK | tm | tm | tm | ktm | ktm | tm |
Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên
c) I3x-1I=5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)
Đên đây thay vào rồi tính nhé
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x-3}{x+1}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow x-3⋮x+1\)
\(\Leftrightarrow x+1-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)
Mà \(x\ne0;x\ne1\)
\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
c) Khi \(\left|3x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên
Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-3\\x\ne3\end{cases}}\)
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)\(=\left[\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right]:\left(\frac{-x^2}{3x^2-27}+\frac{1}{x+3}\right)\)
\(=\left[\frac{x\left(x-3\right)}{3x\left(x-3\right)}+\frac{9}{3x\left(x-3\right)}\right]:\left[\frac{-x^2}{3\left(x^2-9\right)}+\frac{1}{x+3}\right]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:[\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)\(=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}=\frac{x+3}{-x}=\frac{-x-3}{x}=-1-\frac{3}{x}\)
b) \(A< -1\)\(\Leftrightarrow-1-\frac{3}{x}< -1\)\(\Leftrightarrow\frac{-3}{x}< 0\)
mà \(-3< 0\)\(\Rightarrow x>0\)và \(x\ne3\)
Vậy \(A< -1\Leftrightarrow\hept{\begin{cases}x>0\\x\ne3\end{cases}}\)
c) Vì \(-1\inℤ\)\(\Rightarrow\)Để A nguyên thì \(\frac{3}{x}\inℤ\)\(\Rightarrow3⋮x\)
\(\Rightarrow x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=\pm3\)loại
Vậy A nguyên \(\Leftrightarrow x=\pm1\)