K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(a,ĐKXĐ:x\ne0;x\ne1\)

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)

\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)

\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)

5 tháng 8 2017

a)\(M=\left(\frac{x^3+1}{x+1}-x\right):\left(1-\frac{1}{x}\right)\left(ĐKXĐ:x\ne-1;0\right)\)

   \(M=\left[\frac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}-x\right]:\left(\frac{x-1}{x}\right)\)

   \(M=\left(x^2-x+1-x\right).\frac{x}{x-1}\)

    \(M=\left(x-1\right)^2.\frac{x}{x-1}\)

    \(M=x\left(x-1\right)\)

b)Ta có:\(\left|A\right|-A=0\)

          \(\Leftrightarrow\left|x\left(x-1\right)\right|-x\left(x-1\right)=0\)

           \(\Leftrightarrow\left|x^2-x\right|-x^2+x=0\)

\(TH1:x^2-x-x^2+x=0\)

           \(\Leftrightarrow0x=0\)

              \(\Rightarrow x\)vô số nghiệm

\(TH2:-\left(x^2-x\right)-x^2+x=0\)

             \(\Leftrightarrow x-x^2-x^2+x=0\)

               \(\Leftrightarrow2x=0\)

                     \(\Rightarrow x=0\)

5 tháng 8 2017

c)Để M < \(-\frac{1}{2}\) ta có:

        \(x\left(x-1\right)< -\frac{1}{2}\)

           \(\Leftrightarrow x^2-x< -\frac{1}{2}\)

             \(\Leftrightarrow x^2-x+\frac{1}{2}< 0\)

            \(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{1}{4}< 0\)

             \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{1}{4}< 0\)

     Vậy ko có x nào TM để A < -1/2

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

15 tháng 12 2017

a, ĐKXĐ : x^2-9 khác 0 ; x-3 khác 0 ; x+3 khác 0 => x khác -3 và 3

A = x^2+3+2.(x-3)-(x+3)/(x-3).(x+3) = x^2+x-6/(x-3).(x+3) = (x-2).(x+3)/(x-3).(x+3) = x-2/x-3

b, Để A = 1/2 => x-2 = 2.(x-3) = 2x-6

=> x = 4 (tm ĐKXĐ)

k mk nha

6 tháng 3 2019

Bạn lên mạng à nha!!!mk lười lắm!!

k mk nha!

thanks!

ahihi!!!

31 tháng 5 2017

Câu 1:

\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)

Câu 2: thay x vào A có :

\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)

Câu c :

2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)

\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện  vậy ko có giá trị nào của x thỏa mãn