K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

a, \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\) Đkxđ : \(x\ne-7\)

\(\frac{5}{x+7}+\frac{8}{2\left(x+7\right)}=\frac{3}{2}\)

\(\frac{10}{2\left(x+7\right)}+\frac{8}{2\left(x+7\right)}=\frac{3\left(x+7\right)}{2\left(x+7\right)}\)

\(10+8=3\left(x+7\right)\)

\(10+8=3x+21\)

\(-3x=21-10-8\)

\(-3x=3\)

\(x=-1\) ( tm )

Ptr có tập nhiệm : S \(=\left\{-1\right\}\)

b, \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) Đkxđ : \(x\ne3;x\ne0\)

\(\frac{x\left(x+3\right)}{x\left(x-3\right)}-\frac{1\left(x-3\right)}{x\left(x-3\right)}=\frac{3}{x\left(x-3\right)}\)

\(x\left(x-3\right)-1\left(x-3\right)=3\)

\(x^2-3x-x+3=3\)

\(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Ptr có tập nhiệm : S \(=\left\{4\right\}\)

Giải các phương trình sau a) \(\frac{7x-3}{x-1}=\frac{2}{3}\) b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\) c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\) d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\) e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\) g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\) i)...
Đọc tiếp

Giải các phương trình sau

a) \(\frac{7x-3}{x-1}=\frac{2}{3}\)

b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)

e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)

f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)

g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

i) \(\frac{90}{x}-\frac{36}{x-6}=2\)

k) \(\frac{1}{x}+\frac{1}{x=10}=\frac{1}{12}\)

l) \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)

m) \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)

n) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)

o)\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)

p) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

q) \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)

r) \(\frac{x-1}{x}=\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)

0
AH
Akai Haruma
Giáo viên
29 tháng 4 2019

a)

ĐKXĐ: \(x\neq 0; x\neq -10\)

\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)

\(\Leftrightarrow \frac{x+10+x}{x(x+10)}=\frac{1}{12}\)

\(\Leftrightarrow \frac{2x+10}{x(x+10)}=\frac{1}{12}\)

\(\Rightarrow 12(2x+10)=x(x+10)\)

\(\Leftrightarrow x^2-14x-120=0\)

\(\Leftrightarrow (x+6)(x-20)=0\Rightarrow \left[\begin{matrix} x=-6\\ x=20\end{matrix}\right.\) (đều thỏa mãn)

b)

ĐKXĐ: \(x\neq 0; x\neq 3\)

PT\(\Leftrightarrow \frac{(x+3).x-(x-3)}{x(x-3)}=\frac{3}{x(x-3)}\)

\(\Leftrightarrow \frac{x^2+2x+3}{x(x-3)}=\frac{3}{x(x-3)}\)

\(\Rightarrow x^2+2x+3=3\)

\(\Leftrightarrow x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\) . Kết hợp với đkxđ suy ra $x=-2$

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

c)

ĐKXĐ: \(x\neq \pm 2\)

\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{3(x-2)-2(x+2)}{(x+2)(x-2)}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{x-10}{x^2-4}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{x-2}{x^2-4}=0\Leftrightarrow \frac{1}{x+2}=0\) (vô lý)

Vậy pt vô nghiệm.

d)

ĐKXĐ: \(x\neq -2; x\neq 3\)

PT \(\Leftrightarrow \frac{3(x-3)-2(x+2)}{(x+2)(x-3)}=\frac{8}{(x-3)(x+2)}\)

\(\Leftrightarrow \frac{x-13}{(x+2)(x-3)}=\frac{8}{(x-3)(x+2)}\)

\(\Rightarrow x-13=8\Rightarrow x=21\) (thỏa mãn)

Vậy..........

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

22 tháng 3 2020

a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)

=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)

=> \(6x-3-5x+10-x-7=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)

=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)

=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)

=> \(3x+9-2x+2-x-5-6=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)

=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)

=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)

=> \(4x+20+3x+36-5x+10-2x-66=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .