Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^9+1}{2^{10}+1};B=\frac{2^{10}+1}{2^{10}+1}\)
Ta có : ( so sánh tử số )
29 + 1 và 210 + 1
Vì 10 > 9 => 2^10 > 2^9 => 2^10 + 1 > 2^9+1 hay \(A< B\)
Ta thấy :
\(B=\frac{2^{10}+1}{2^{10}+1}=1\)
\(A=\frac{2^9+1}{2^{10}+1}< 1=\frac{2^{10}+1}{2^{10}+1}=B\)
\(\Rightarrow A< B\)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1
B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3
Vì ... bạn tự làm nha.nhớ k đấy
A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)
B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì 2010-1 > 2010-3
=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)
=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
=> A < B
Vậy A < B
mọi người ơi, lm xong bài này trong tối nay hộ mình cái, mình càn gấp lắm rùi
2. So sánh A và B
b) A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{20}{20}-\frac{1}{20}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)
A = \(\frac{1.2.3.....19}{2.3.4.....20}\)
A = \(\frac{1}{20}\)
Mà \(\frac{1}{20}\)> \(\frac{1}{21}\)
=> A > B
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
Giải như mà mình không chắc nha:
a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)
Ta có:
\(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)
\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)
Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......
b) Bạn giải tương tự nha! Lười lắm :v
Ta có: B > 1
=> B = \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}=A\)
Vậy A < B
\(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Nhận thấy: \(\frac{2}{2^{10}-3}>\frac{2}{2^{10}-1}\) do 210-3 < 210-1
Vậy: \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}+1}{2^{10}-1}\)
____Giải____
Ta có: \(A=\frac{2^9+1}{2^{10}+1}\Rightarrow2A=\frac{2^{10}+2}{2^{10}+1}=1+\frac{1}{2^{10}+1}\)
\(B=\frac{2^{10}+1}{2^{11}+1}\Rightarrow2B=\frac{2^{11}+2}{2^{11}+1}=1+\frac{1}{2^{11}+1}\)
So Sánh 2A và 2B dễ thấy \(\frac{1}{2^{10}+1}>\frac{1}{2^{11}+1}\)
\(\Rightarrow2A>2B\Rightarrow A>B\)