Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=1\)và \(\frac{10^{1994}+10}{10^{1994}+1}=1\)
Học tốt
A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=10\) và \(\frac{10^{1994}+10}{10^{1994}+1}=10\)
học tốt
\(A=\frac{10^{1993}+10}{10^{1993}+1}\)
\(=\frac{10^{1993}+1+9}{10^{1993}+1}\)
\(=\frac{10^{1993}+1}{10^{1993}+1}+\frac{9}{10^{1993}+1}\)
\(=1+\frac{9}{10^{1993}+1}\)( 1 )
\(B=\frac{10^{1994}+10}{10^{1994}+1}\)
\(=\frac{10^{1994}+1+9}{10^{1994}+1}\)
\(=\frac{10^{1994}+1}{10^{1994}+1}+\frac{9}{10^{1994}+1}\)
\(=1+\frac{9}{10^{1994}+1}\)( 2 )
Vì \(\frac{9}{10^{1993}+1}>\frac{9}{10^{1994}+1}\)( 3 )
Từ ( 1 )( 2 )( 3 )\(\Rightarrow1+\frac{9}{10^{1993}+1}>1+\frac{9}{10^{1994}+1}\)
\(\Rightarrow A>B\)
Ta có :
\(A=\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow\frac{1}{10}A=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-11}{10^{1992}+10}=1-\frac{11}{10^{1992}+10}\)
\(B=\frac{10^{1993}+1}{10^{1992}+1}\)
\(\Rightarrow\frac{1}{10}B=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-11}{10^{1993}+10}=1-\frac{11}{10^{1993}+10}\)
Mà \(10^{1993}+10>10^{1992}+10\)
\(\Rightarrow\frac{11}{10^{1993}+10}< \frac{11}{10^{1992}+10}\)
\(\Rightarrow1-\frac{11}{10^{1993}+10}>1-\frac{11}{10^{1992}+10}\)
\(\Leftrightarrow\frac{1}{10}B>\frac{1}{10}A\)
\(\Rightarrow B>A\)
\(n=\frac{1995\times1994-1}{1993\times1995+1994}\)
\(n=\frac{1995\times\left(1993+1\right)-1}{1995\times1993+1994}\)
\(n=\frac{1995\times1993+1995\times1-1}{1995\times1993+1994}\)
\(n=\frac{1995\times1993+1994}{1995\times1993+1994}\)
\(n=1\)(vì TS = MS)
\(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995.1994-1}{\left(1994-1\right)1995+1994}=\frac{1995.1994-1}{1994.1005-1995+1994}=\frac{1995.1994-1}{1994.1995-1}=1\)
Vậy n = 1
Ta có : \(A=\frac{1993.1995+28}{1993.\left(1995+1\right)-1965}=\frac{1993.1995+28}{1993.1995+1993-1965}=\frac{1993.1995+28}{1993.1995+28}=1\)
Bài giải
\(A=\frac{1993\cdot1995+28}{1993\cdot1996-1965}=\frac{1993\cdot1995+28}{1993\cdot1995+1993-1965}=\frac{1993\cdot1995+28}{1993\cdot1995+28}=1\)
Vậy A = 1