Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)
b) áp dụng cauchuy-schwarz dạng engel ta có :
\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)
dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy ....................................................................................................................
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
Lời giải:
Điều kiện để $Q$ có nghĩa.
\(x>0; x\neq 1\)
\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)
\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)
\(=\frac{x-1}{\sqrt{x}}\)
b)
\(Q=3\sqrt{x}-3\)
\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)
\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)
Vì \(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:
\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)
\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)
ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
sửa lại đi ông ơi
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a)Đkxđ : x#1 , x > 0
Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
Q=\(\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}X\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
Q=\(\dfrac{x-1}{\sqrt{x}}\)
b)Thay x = 2\(\sqrt{2}\)+3 vào phương trình ta được :
Q=\(\dfrac{2\sqrt{2}+3-1}{\sqrt{2\sqrt{2}+3}}\)
Q=\(\dfrac{2\sqrt{2}+2}{\sqrt{\left(\sqrt{2}+1\right)}^2}\)
Q=\(\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
Q= 2
a) điều kiện xác định : \(x>0;x\ne1\)
ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)
b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\) và \(x\ne1\)
vậy ....
Đk: x >0 ; x khác 1
sau khi rút gọn ra -2\(\sqrt{x}\)
b, 9>x>0
a: ĐKXĐ: x>0; x<>1
\(A=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)-\sqrt{x}\left(x+2\sqrt{x}+1\right)}{x-1}\)
\(=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1-x-2\sqrt{x}-1\right)}{2\sqrt{x}}=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)
b: Để A>-6 thì -2 căn x>-6
=>2 căn x<6
=>0<x<9
ĐKXĐ: \(x>0;x\ne1\)
\(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}=\dfrac{x-1+x+\sqrt{x}}{1-x}+\dfrac{x\sqrt{x}-\sqrt{x}+x\sqrt{x}+x}{1+x\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{\left(2\sqrt{x}-1\right)\sqrt{x}}{x-\sqrt{x}+1}=\left(2\sqrt{x}-1\right)\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)
Vậy \(A=\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\right):\left(\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
b/ Dễ dàng nhận ra \(A>0\)\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}}=\sqrt{17-12\sqrt{2}}-1+\dfrac{1}{\sqrt{17-12\sqrt{2}}}\)
\(A=\sqrt{17-12\sqrt{2}}-1+\sqrt{17+12\sqrt{2}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-1+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(\Rightarrow A=3-2\sqrt{2}+3+2\sqrt{2}-1=6-1=5\)
c/ Ta có \(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}-1=1\) (dấu "=" không xảy ra)
Mà \(A>0\Rightarrow\sqrt{A}>1\Rightarrow\sqrt{A}-1>0\)
Ta có \(A-\sqrt{A}=\sqrt{A}\left(\sqrt{A}-1\right)>0\) do \(\left\{{}\begin{matrix}\sqrt{A}>0\\\sqrt{A}-1>0\end{matrix}\right.\)
\(\Rightarrow A>\sqrt{A}\) \(\forall x\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(dk:x\ne0,\pm1\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)