K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

vì có ít time nên mk hướng dẩn thôi nha .

câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)

và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)

từ (1) (2) ta có hệ : \(\Rightarrow a;b;c\)

câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)

thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .

câu 3 : tương tự câu 2 thôi nha

từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................

12 tháng 8 2018

Ok tks fen

19 tháng 12 2022

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)

15 tháng 11 2018

Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)

Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)

Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)

Từ (1), (2), (3) ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...

=> xem lại đề @@

15 tháng 11 2018

thank tao thấy vô lý lên mới đi hỏi

NV
6 tháng 11 2019

\(a\ne0\)

Từ điều kiện đề bài ta có hệ:

\(\left\{{}\begin{matrix}c=-1\\-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\b=-4a\\-4a-b^2=0\end{matrix}\right.\) \(\Rightarrow b^2=b\Rightarrow\left[{}\begin{matrix}b=0\left(l\right)\\b=1\end{matrix}\right.\)

\(\Rightarrow a=-\frac{1}{4}\Rightarrow y=-\frac{1}{4}x^2+x-1\)

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


4 tháng 11 2021

Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)

Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)

Vậy \(\left(P\right):y=2x^2-x+3\)

 

4 tháng 11 2021

DẠ CẢM ƠN NHIỀU Ạ !!!

NV
11 tháng 3 2023

Với \(a\ne0\) từ đề bài ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\)

\(\Rightarrow a=-1;b=4;c=-3\)

Vậy (P): \(y=-x^2+4x-3\)