Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : E = 2x4 + 3x2 + 7
Mà : 2x4 \(\ge0\forall x\in R\)
3x2 \(\ge0\forall x\in R\)
Nên : E = 2x4 + 3x2 + 7 \(\ge7\forall x\in R\)
Vây GTNN của E = 7
Dấu "=" sảy ra khi : \(\hept{\begin{cases}2x^4=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^4=0\\x^2=0\end{cases}\Leftrightarrow}x=0}\)
\(x^4+2019x^2+2018x+2019\)
\(=x^4-x^3+x^3+2019x^2-x^2+x^2+2019x-x+2019\)
\(=\left(x^4-x^3+2019x^2\right)+\left(x^3-x^2+2019x\right)+\left(x^2-x+2019\right)\)
\(=x^2\left(x^2-x+2019\right)+x\left(x^2-x+2019\right)+\left(x^2-x+2019\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
a^2-25-2ab+b^2
= (a^2 - 2ab + b^2 ) - 5^2
= (a -b)^2 - 5^2 = ( a - b - 5 ) ( a - b + 5 )
5x^2-6xy+y^2
= (3x)^2 - 2.3x.y + y^2 - (2x)^2
= (3x - y)^2 - (2x)^2
= ( 3x - y - 2x ) ( 3x - y + 2x ) = ( x - y) ( 5x - y )
2x^3-8x^2+8x
= 2x^3 - 4x^2 - 4x^2 + 8x
= 2x^2(x - 2) - 4x(x-2)
= (2x^2 - 4x)(x-2)
= 2x(x-2)(x-2) = 2x .(x-2)^2
5x-5y-3x^2+6xy-3y^2
=5(x - y) - 3(x^2 - 2xy + y^2 )
= 5(x-y) - 3(x-y)^2 = (x-y)[ 5 - 3(x-y) ]
4x^4-9x^2
= (2x^2)^2 - (3x)^2
= (2x^2 - 3x)(2x^2 + 3x)
= x(2x - 3)x(2x + 3 ) = x^2(2x - 3)(2x + 3 )
a) \(a^2-25-2ab+b^2\)
\(=\left(a-b\right)^2-25\)
\(=\left(a-b-5\right)\left(a-b+5\right)\)
b) \(5x^2-6xy+y^2\)
\(=\left(3x\right)^2-2.3x.y+y^2-\left(2x\right)^2\)
\(=\left(3x-y\right)^2-\left(2x\right)^2\)
\(=\left(3x-y-2x\right)\left(3x-y+2x\right)\)
\(=\left(x-y\right)\left(5x-y\right)\)
c) \(2x^3-8x^2+8x\)
\(=2x^3-4x^2-4x^2+8x\)
\(=2x^2\left(x-2\right)-4x\left(x-2\right)\)
\(=2x\left(x-2\right)\left(x-2\right)\)
\(=2x\left(x-2\right)^2\)
d) \(5x-5y-3x^2+6xy-3y^2\)
\(=5\left(x-y\right)-3\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)-3\left(x-y\right)^2\)
\(=\left(x-y\right)\left[5-3\left(x-y\right)\right]\)
e) \(4x^4-9x^2\)
\(=\left(2x^2\right)^2-\left(3x\right)^2\)
\(=\left(2x^2-3x\right)\left(2x^2+3x\right)\)
\(=x\left(2x-3\right).x\left(2x+3\right)\)
\(=x^2\left(2x-3\right)\left(2x+3\right)\)
f) \(x^8+4\)
\(=\left(x^4\right)^2+2.x^4.2+2^2-2.x^4.2\)
\(=\left(x^4+2\right)^2-4x^4\)
\(=\left(x^4+2\right)^2-\left(2x^2\right)^2\)
\(=\left(x^4+2-2x^2\right)\left(x^4+2+2x^2\right)\)
i) \(4x^2-y^2+4x+1\)
\(=\left(2x\right)^2+2.2x+1-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+1-y\right)\left(2x+1+y\right)\)
j) \(3x^2-7x+10\)
\(=3\left(x^2-\dfrac{7}{3}x+\dfrac{10}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{49}{36}+\dfrac{10}{3}\right)\)
\(=3\left[\left(x-\dfrac{7}{6}\right)^2+\dfrac{71}{36}\right]\)
g) \(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2-1\right)\)
h) \(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
1.phân tích đa thức thành nhân tử
x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1 ) - 4x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - 4x + 4 ) = ( x - 1 )( x - 2 )2
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a2 + b2 + c2
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)
Đẳng thức xảy ra <=> a=b=c1/2. Vậy MinP = 3/4
a, =x4-x + 2019x2+2019x+2019
=x(x3-1)+2019(x2+x+1)
=x(x-1)(x2+x+1)+2019(x2+x+1)
=(x2-x+2019)(x2+x+1)
b, =(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2 ] + (z-x)3
=(x-z)(x2-2xy+y2-xy+xz+y2-yz+y2-2yz+z2) - (x-z)3
=(x-z)(x2-2xy+y2-xy+xz+y2-yz+y2-2yz+z2-x2+2xz-z2)
=(x-z)(-3xy+3y2+3xz-3yz)
=3(x-z)(-xy+y2+xz-yz)
=3(x-z)[(-xy+xz)+(y2-yz)]
=3(x-z)[-x(y-z)+y(y-z)]
=3(y-x)(x-z)(y-z)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) \(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
b) \(E=2x^2-8x+1=2x^2-8x+8-7\)
\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy MinE = -7 <=> x = 2
b) \(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....