Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+2005x^2+2004x+2005
=x^4-x+2005x^2+2005x+2005
=x(x^3-1)+2005(x^2+x+1)
=x(x-1)(x^2+x+1)+2005(x^2+x+1)
=(x^2+x+1)(x^2-x+2005)
b) \(9x^3+6x^2+x\)
\(=x\left(9x^2+6x+1\right)\)
\(=x\left(3x+1\right)^2\)
c) \(x^4+5x^3+15x-9\)
\(=\left(x^4-9\right)+5x\left(x^2+3\right)\)
\(=\left(x^2-3\right)\left(x^2+3\right)+5x\left(x^2+3\right)\)
\(=\left(x^2+3\right)\left(x^2-3+5x\right)\)
a) \(x^2-y^2+10y-25\)
\(=x^2-\left(y^2-10y+25\right)\)
\(=x^2-\left(y-5\right)^2\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
\(x^2-2xy+5x-10y\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x+5\right)\left(x-2y\right)\)
\(x^2-2xy+5x-10y\)
\(=\left(x^2-2xy\right)+\left(5x-10y\right)\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+5\right)\)
\(x-3\sqrt{x}+\sqrt{xy}-3y\)
\(=\left(x-3\sqrt{x}\right)+\left(\sqrt{xy}-3y\right)\)
\(=\sqrt{x}\left(\sqrt{x}-3\right)+y\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}+y\right)\)
a , 3x2 + 3y2 - 6xy - 12
= 3 ( x2 + y2 - 2xy - 4 )
= 3 ( x - y )2 - 22
= 3 ( x - y + 2 ) ( x - y - 2 )
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
a)Bạn xem lại đề được không
b)Đặt x^2 ra ngoài
c)Đặt x^3=t rồi quy đồng
d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?
A = -x2 + 2xy - 4y2 + 2x + 10y - 8
=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5
= [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5
= ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y
Dấu "=" xảy ra <=> x = 3 ; y = 2
=> -A ≥ -5
=> A ≤ 5
=> MaxA = 5 <=> x = 3 ; y = 2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975
= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975
= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975
= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y
Dấu "=" xảy ra <=> x = 5 ; y = 7/3
=> MinB = 1975 <=> x = 5 ; y = 7/3
Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8
A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]
A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]
A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5
A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x
Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0
=>x = -1 và y = -2
Vậy MaxA = 5 khi x = -1 và y = -2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975
B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975
đoạn cuối tt trên
a, ta có : \(x^4+2005x^2+2004x+2005\)
=\(x^4-x+2005x^2+2005x+2005\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2005\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2005\right)\)
b, ta có \(-x^2-10y^2+6xy-2x+10y+9\)
=\(-\left(x^2+1+2x-6xy+9y^2-6y\right)-y^2+4y-4+13\)=\(13-\left(x-3y+1\right)^2-\left(y-2\right)^2\le13\forall x\)
Vậy Max=13 \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)